ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23bi GIF version

Theorem 19.23bi 1499
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.23bi.1 (∃𝑥𝜑𝜓)
Assertion
Ref Expression
19.23bi (𝜑𝜓)

Proof of Theorem 19.23bi
StepHypRef Expression
1 19.8a 1498 . 2 (𝜑 → ∃𝑥𝜑)
2 19.23bi.1 . 2 (∃𝑥𝜑𝜓)
31, 2syl 14 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1397
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-4 1416
This theorem depends on definitions:  df-bi 114
This theorem is referenced by:  mo2icl  2743  copsexg  4009
  Copyright terms: Public domain W3C validator