ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  copsexg GIF version

Theorem copsexg 4008
Description: Substitution of class 𝐴 for ordered pair 𝑥, 𝑦. (Contributed by NM, 27-Dec-1996.) (Revised by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
copsexg (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem copsexg
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2577 . . . 4 𝑥 ∈ V
2 vex 2577 . . . 4 𝑦 ∈ V
31, 2eqvinop 4007 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑧𝑤(𝐴 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩))
4 19.8a 1498 . . . . . . . . 9 (∃𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5419.23bi 1499 . . . . . . . 8 ((⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
65ex 112 . . . . . . 7 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ → (𝜑 → ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
7 vex 2577 . . . . . . . . 9 𝑧 ∈ V
8 vex 2577 . . . . . . . . 9 𝑤 ∈ V
97, 8opth 4001 . . . . . . . 8 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑧 = 𝑥𝑤 = 𝑦))
109anbi1i 439 . . . . . . . . . 10 ((⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑))
11102exbii 1513 . . . . . . . . 9 (∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑))
12 nfe1 1401 . . . . . . . . . . 11 𝑥𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))
13 dveeq2or 1713 . . . . . . . . . . . 12 (∀𝑦 𝑦 = 𝑥 ∨ Ⅎ𝑦 𝑧 = 𝑥)
14 nfae 1623 . . . . . . . . . . . . . . 15 𝑦𝑦 𝑦 = 𝑥
15 anass 387 . . . . . . . . . . . . . . . 16 (((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) ↔ (𝑧 = 𝑥 ∧ (𝑤 = 𝑦𝜑)))
16 19.8a 1498 . . . . . . . . . . . . . . . . . 18 ((𝑤 = 𝑦𝜑) → ∃𝑦(𝑤 = 𝑦𝜑))
1716a1i 9 . . . . . . . . . . . . . . . . 17 (∀𝑦 𝑦 = 𝑥 → ((𝑤 = 𝑦𝜑) → ∃𝑦(𝑤 = 𝑦𝜑)))
1817anim2d 324 . . . . . . . . . . . . . . . 16 (∀𝑦 𝑦 = 𝑥 → ((𝑧 = 𝑥 ∧ (𝑤 = 𝑦𝜑)) → (𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
1915, 18syl5bi 145 . . . . . . . . . . . . . . 15 (∀𝑦 𝑦 = 𝑥 → (((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) → (𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
2014, 19eximd 1519 . . . . . . . . . . . . . 14 (∀𝑦 𝑦 = 𝑥 → (∃𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) → ∃𝑦(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
21 biidd 165 . . . . . . . . . . . . . . 15 (∀𝑦 𝑦 = 𝑥 → ((𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)) ↔ (𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
2221drex1 1695 . . . . . . . . . . . . . 14 (∀𝑦 𝑦 = 𝑥 → (∃𝑦(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)) ↔ ∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
2320, 22sylibd 142 . . . . . . . . . . . . 13 (∀𝑦 𝑦 = 𝑥 → (∃𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) → ∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
2415exbii 1512 . . . . . . . . . . . . . . 15 (∃𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) ↔ ∃𝑦(𝑧 = 𝑥 ∧ (𝑤 = 𝑦𝜑)))
25 19.40 1538 . . . . . . . . . . . . . . . 16 (∃𝑦(𝑧 = 𝑥 ∧ (𝑤 = 𝑦𝜑)) → (∃𝑦 𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)))
26 19.9t 1549 . . . . . . . . . . . . . . . . . 18 (Ⅎ𝑦 𝑧 = 𝑥 → (∃𝑦 𝑧 = 𝑥𝑧 = 𝑥))
2726biimpd 136 . . . . . . . . . . . . . . . . 17 (Ⅎ𝑦 𝑧 = 𝑥 → (∃𝑦 𝑧 = 𝑥𝑧 = 𝑥))
2827anim1d 323 . . . . . . . . . . . . . . . 16 (Ⅎ𝑦 𝑧 = 𝑥 → ((∃𝑦 𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)) → (𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
2925, 28syl5 32 . . . . . . . . . . . . . . 15 (Ⅎ𝑦 𝑧 = 𝑥 → (∃𝑦(𝑧 = 𝑥 ∧ (𝑤 = 𝑦𝜑)) → (𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
3024, 29syl5bi 145 . . . . . . . . . . . . . 14 (Ⅎ𝑦 𝑧 = 𝑥 → (∃𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) → (𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
31 19.8a 1498 . . . . . . . . . . . . . 14 ((𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)) → ∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)))
3230, 31syl6 33 . . . . . . . . . . . . 13 (Ⅎ𝑦 𝑧 = 𝑥 → (∃𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) → ∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
3323, 32jaoi 646 . . . . . . . . . . . 12 ((∀𝑦 𝑦 = 𝑥 ∨ Ⅎ𝑦 𝑧 = 𝑥) → (∃𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) → ∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
3413, 33ax-mp 7 . . . . . . . . . . 11 (∃𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) → ∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)))
3512, 34exlimi 1501 . . . . . . . . . 10 (∃𝑥𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) → ∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)))
36 euequ1 2011 . . . . . . . . . . . . . 14 ∃!𝑥 𝑥 = 𝑧
37 equcom 1609 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧𝑧 = 𝑥)
3837eubii 1925 . . . . . . . . . . . . . 14 (∃!𝑥 𝑥 = 𝑧 ↔ ∃!𝑥 𝑧 = 𝑥)
3936, 38mpbi 137 . . . . . . . . . . . . 13 ∃!𝑥 𝑧 = 𝑥
40 eupick 1995 . . . . . . . . . . . . 13 ((∃!𝑥 𝑧 = 𝑥 ∧ ∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))) → (𝑧 = 𝑥 → ∃𝑦(𝑤 = 𝑦𝜑)))
4139, 40mpan 408 . . . . . . . . . . . 12 (∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)) → (𝑧 = 𝑥 → ∃𝑦(𝑤 = 𝑦𝜑)))
4241com12 30 . . . . . . . . . . 11 (𝑧 = 𝑥 → (∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)) → ∃𝑦(𝑤 = 𝑦𝜑)))
43 euequ1 2011 . . . . . . . . . . . . . 14 ∃!𝑦 𝑦 = 𝑤
44 equcom 1609 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤𝑤 = 𝑦)
4544eubii 1925 . . . . . . . . . . . . . 14 (∃!𝑦 𝑦 = 𝑤 ↔ ∃!𝑦 𝑤 = 𝑦)
4643, 45mpbi 137 . . . . . . . . . . . . 13 ∃!𝑦 𝑤 = 𝑦
47 eupick 1995 . . . . . . . . . . . . 13 ((∃!𝑦 𝑤 = 𝑦 ∧ ∃𝑦(𝑤 = 𝑦𝜑)) → (𝑤 = 𝑦𝜑))
4846, 47mpan 408 . . . . . . . . . . . 12 (∃𝑦(𝑤 = 𝑦𝜑) → (𝑤 = 𝑦𝜑))
4948com12 30 . . . . . . . . . . 11 (𝑤 = 𝑦 → (∃𝑦(𝑤 = 𝑦𝜑) → 𝜑))
5042, 49sylan9 395 . . . . . . . . . 10 ((𝑧 = 𝑥𝑤 = 𝑦) → (∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)) → 𝜑))
5135, 50syl5 32 . . . . . . . . 9 ((𝑧 = 𝑥𝑤 = 𝑦) → (∃𝑥𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) → 𝜑))
5211, 51syl5bi 145 . . . . . . . 8 ((𝑧 = 𝑥𝑤 = 𝑦) → (∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝜑))
539, 52sylbi 118 . . . . . . 7 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ → (∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝜑))
546, 53impbid 124 . . . . . 6 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
55 eqeq1 2062 . . . . . . 7 (𝐴 = ⟨𝑧, 𝑤⟩ → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩))
5655anbi1d 446 . . . . . . . . 9 (𝐴 = ⟨𝑧, 𝑤⟩ → ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
57562exbidv 1764 . . . . . . . 8 (𝐴 = ⟨𝑧, 𝑤⟩ → (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
5857bibi2d 225 . . . . . . 7 (𝐴 = ⟨𝑧, 𝑤⟩ → ((𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝜑 ↔ ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))))
5955, 58imbi12d 227 . . . . . 6 (𝐴 = ⟨𝑧, 𝑤⟩ → ((𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))) ↔ (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))))
6054, 59mpbiri 161 . . . . 5 (𝐴 = ⟨𝑧, 𝑤⟩ → (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))))
6160adantr 265 . . . 4 ((𝐴 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩) → (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))))
6261exlimivv 1792 . . 3 (∃𝑧𝑤(𝐴 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩) → (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))))
633, 62sylbi 118 . 2 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))))
6463pm2.43i 47 1 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wo 639  wal 1257   = wceq 1259  wnf 1365  wex 1397  ∃!weu 1916  cop 3405
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411
This theorem is referenced by:  copsex2t  4009  copsex2g  4010  opabid  4021  mosubopt  4432
  Copyright terms: Public domain W3C validator