ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6p1e7 GIF version

Theorem 6p1e7 8237
Description: 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
6p1e7 (6 + 1) = 7

Proof of Theorem 6p1e7
StepHypRef Expression
1 df-7 8170 . 2 7 = (6 + 1)
21eqcomi 2086 1 (6 + 1) = 7
Colors of variables: wff set class
Syntax hints:   = wceq 1285  (class class class)co 5543  1c1 7044   + caddc 7046  6c6 8160  7c7 8161
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-cleq 2075  df-7 8170
This theorem is referenced by:  9t8e72  8685
  Copyright terms: Public domain W3C validator