![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ad4antlr | GIF version |
Description: Deduction adding 4 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad4antlr | ⊢ (((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | ad3antlr 477 | . 2 ⊢ ((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
3 | 2 | adantr 270 | 1 ⊢ (((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem is referenced by: ad5antlr 481 maxabslemval 10232 |
Copyright terms: Public domain | W3C validator |