ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumconst GIF version

Theorem fsumconst 11223
Description: The sum of constant terms (𝑘 is not free in 𝐵). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
fsumconst ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem fsumconst
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11124 . . 3 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
2 fveq2 5421 . . . 4 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
32oveq1d 5789 . . 3 (𝑤 = ∅ → ((♯‘𝑤) · 𝐵) = ((♯‘∅) · 𝐵))
41, 3eqeq12d 2154 . 2 (𝑤 = ∅ → (Σ𝑘𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘 ∈ ∅ 𝐵 = ((♯‘∅) · 𝐵)))
5 sumeq1 11124 . . 3 (𝑤 = 𝑦 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑦 𝐵)
6 fveq2 5421 . . . 4 (𝑤 = 𝑦 → (♯‘𝑤) = (♯‘𝑦))
76oveq1d 5789 . . 3 (𝑤 = 𝑦 → ((♯‘𝑤) · 𝐵) = ((♯‘𝑦) · 𝐵))
85, 7eqeq12d 2154 . 2 (𝑤 = 𝑦 → (Σ𝑘𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)))
9 sumeq1 11124 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
10 fveq2 5421 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (♯‘𝑤) = (♯‘(𝑦 ∪ {𝑧})))
1110oveq1d 5789 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ((♯‘𝑤) · 𝐵) = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵))
129, 11eqeq12d 2154 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (Σ𝑘𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵)))
13 sumeq1 11124 . . 3 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
14 fveq2 5421 . . . 4 (𝑤 = 𝐴 → (♯‘𝑤) = (♯‘𝐴))
1514oveq1d 5789 . . 3 (𝑤 = 𝐴 → ((♯‘𝑤) · 𝐵) = ((♯‘𝐴) · 𝐵))
1613, 15eqeq12d 2154 . 2 (𝑤 = 𝐴 → (Σ𝑘𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵)))
17 hash0 10543 . . . . 5 (♯‘∅) = 0
1817oveq1i 5784 . . . 4 ((♯‘∅) · 𝐵) = (0 · 𝐵)
19 simpr 109 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
2019mul02d 8154 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (0 · 𝐵) = 0)
2118, 20syl5eq 2184 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ((♯‘∅) · 𝐵) = 0)
22 sum0 11157 . . 3 Σ𝑘 ∈ ∅ 𝐵 = 0
2321, 22syl6reqr 2191 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ ∅ 𝐵 = ((♯‘∅) · 𝐵))
24 simpr 109 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵))
25 vex 2689 . . . . . . . 8 𝑧 ∈ V
26 eqidd 2140 . . . . . . . . 9 (𝑘 = 𝑧𝐵 = 𝐵)
2726sumsn 11180 . . . . . . . 8 ((𝑧 ∈ V ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑧}𝐵 = 𝐵)
2825, 27mpan 420 . . . . . . 7 (𝐵 ∈ ℂ → Σ𝑘 ∈ {𝑧}𝐵 = 𝐵)
2928ad4antlr 486 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ {𝑧}𝐵 = 𝐵)
3024, 29oveq12d 5792 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵) = (((♯‘𝑦) · 𝐵) + 𝐵))
31 simprr 521 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
3231eldifbd 3083 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
33 disjsn 3585 . . . . . . . 8 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
3432, 33sylibr 133 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∩ {𝑧}) = ∅)
35 eqidd 2140 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
36 simplr 519 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
37 snfig 6708 . . . . . . . . . 10 (𝑧 ∈ V → {𝑧} ∈ Fin)
3837elv 2690 . . . . . . . . 9 {𝑧} ∈ Fin
3938a1i 9 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → {𝑧} ∈ Fin)
40 unfidisj 6810 . . . . . . . 8 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin ∧ (𝑦 ∩ {𝑧}) = ∅) → (𝑦 ∪ {𝑧}) ∈ Fin)
4136, 39, 34, 40syl3anc 1216 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∪ {𝑧}) ∈ Fin)
42 simp-4r 531 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℂ)
4334, 35, 41, 42fsumsplit 11176 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵))
4443adantr 274 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵))
45 hashcl 10527 . . . . . . . 8 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
4645ad3antlr 484 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘𝑦) ∈ ℕ0)
4746nn0cnd 9032 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘𝑦) ∈ ℂ)
48 simp-4r 531 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → 𝐵 ∈ ℂ)
4947, 48adddirp1d 7792 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (((♯‘𝑦) + 1) · 𝐵) = (((♯‘𝑦) · 𝐵) + 𝐵))
5030, 44, 493eqtr4d 2182 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (((♯‘𝑦) + 1) · 𝐵))
5136adantr 274 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → 𝑦 ∈ Fin)
5238a1i 9 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → {𝑧} ∈ Fin)
5334adantr 274 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (𝑦 ∩ {𝑧}) = ∅)
54 hashun 10551 . . . . . . 7 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin ∧ (𝑦 ∩ {𝑧}) = ∅) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + (♯‘{𝑧})))
5551, 52, 53, 54syl3anc 1216 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + (♯‘{𝑧})))
56 hashsng 10544 . . . . . . . 8 (𝑧 ∈ V → (♯‘{𝑧}) = 1)
5756elv 2690 . . . . . . 7 (♯‘{𝑧}) = 1
5857oveq2i 5785 . . . . . 6 ((♯‘𝑦) + (♯‘{𝑧})) = ((♯‘𝑦) + 1)
5955, 58syl6eq 2188 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
6059oveq1d 5789 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → ((♯‘(𝑦 ∪ {𝑧})) · 𝐵) = (((♯‘𝑦) + 1) · 𝐵))
6150, 60eqtr4d 2175 . . 3 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵))
6261ex 114 . 2 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵)))
63 simpl 108 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ Fin)
644, 8, 12, 16, 23, 62, 63findcard2sd 6786 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1331  wcel 1480  Vcvv 2686  cdif 3068  cun 3069  cin 3070  wss 3071  c0 3363  {csn 3527  cfv 5123  (class class class)co 5774  Fincfn 6634  cc 7618  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625  0cn0 8977  chash 10521  Σcsu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  fsumdifsnconst  11224  hashiun  11247  hash2iun1dif1  11249  mertenslemi1  11304
  Copyright terms: Public domain W3C validator