ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantrlr GIF version

Theorem adantrlr 462
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantr2.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
adantrlr ((𝜑 ∧ ((𝜓𝜏) ∧ 𝜒)) → 𝜃)

Proof of Theorem adantrlr
StepHypRef Expression
1 simpl 106 . 2 ((𝜓𝜏) → 𝜓)
2 adantr2.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylanr1 390 1 ((𝜑 ∧ ((𝜓𝜏) ∧ 𝜒)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem is referenced by:  genpdisj  6678  ltexprlemdisj  6761  addcanprlemu  6770  addsrmo  6885  mulsrmo  6886
  Copyright terms: Public domain W3C validator