ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-i12 Structured version   GIF version

Axiom ax-i12 1337
Description: Axiom of Quantifier Introduction. One of the equality and substitution axioms of predicate calculus with equality. Informally, it says that whenever z is distinct from x and y, and x = y is true, then x = y quantified with z is also true. In other words, z is irrelevant to the truth of x = y. Axiom scheme C9' in [Megill] p. 448 (p. 16 of the preprint). It apparently does not otherwise appear in the literature but is easily proved from textbook predicate calculus by cases.

This axiom has been modified from the original ax-12 1341 for compatibility with intuitionistic logic. (Contributed by Mario Carneiro, 31-Jan-2015.)

Assertion
Ref Expression
ax-i12 (z z = x (z z = y z(x = yz x = y)))

Detailed syntax breakdown of Axiom ax-i12
StepHypRef Expression
1 vz . . . 4 set z
2 vx . . . 4 set x
31, 2weq 1331 . . 3 wff z = x
43, 1wal 1272 . 2 wff z z = x
5 vy . . . . 5 set y
61, 5weq 1331 . . . 4 wff z = y
76, 1wal 1272 . . 3 wff z z = y
82, 5weq 1331 . . . . 5 wff x = y
98, 1wal 1272 . . . . 5 wff z x = y
108, 9wi 4 . . . 4 wff (x = yz x = y)
1110, 1wal 1272 . . 3 wff z(x = yz x = y)
127, 11wo 609 . 2 wff (z z = y z(x = yz x = y))
134, 12wo 609 1 wff (z z = x (z z = y z(x = yz x = y)))
Colors of variables: wff set class
This axiom is referenced by:  ax-12  1341  ax12or  1342  dveeq2  1617  dveeq2or  1618  dvelimALT  1801  dvelimfv  1802
  Copyright terms: Public domain W3C validator