Detailed syntax breakdown of Axiom ax-iinf
Step | Hyp | Ref
| Expression |
1 | | c0 3218 |
. . . 4
class ∅ |
2 | | vx |
. . . . 5
setvar x |
3 | 2 | cv 1241 |
. . . 4
class x |
4 | 1, 3 | wcel 1390 |
. . 3
wff ∅ ∈ x |
5 | | vy |
. . . . . 6
setvar y |
6 | 5, 2 | wel 1391 |
. . . . 5
wff y ∈ x |
7 | 5 | cv 1241 |
. . . . . . 7
class y |
8 | 7 | csuc 4068 |
. . . . . 6
class suc y |
9 | 8, 3 | wcel 1390 |
. . . . 5
wff suc y ∈ x |
10 | 6, 9 | wi 4 |
. . . 4
wff (y ∈ x → suc y
∈ x) |
11 | 10, 5 | wal 1240 |
. . 3
wff ∀y(y ∈ x → suc y
∈ x) |
12 | 4, 11 | wa 97 |
. 2
wff (∅ ∈ x ∧ ∀y(y ∈ x → suc
y ∈
x)) |
13 | 12, 2 | wex 1378 |
1
wff ∃x(∅
∈ x ∧ ∀y(y ∈ x → suc
y ∈
x)) |