![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-pow | GIF version |
Description: Axiom of Power Sets. An
axiom of Intuitionistic Zermelo-Fraenkel set
theory. It states that a set y exists that includes the power set
of a given set x i.e. contains every subset of x. This is
Axiom 8 of [Crosilla] p. "Axioms
of CZF and IZF" except (a) unnecessary
quantifiers are removed, and (b) Crosilla has a biconditional rather
than an implication (but the two are equivalent by bm1.3ii 3869).
The variant axpow2 3920 uses explicit subset notation. A version using class notation is pwex 3923. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ax-pow | ⊢ ∃y∀z(∀w(w ∈ z → w ∈ x) → z ∈ y) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vw | . . . . . . 7 setvar w | |
2 | vz | . . . . . . 7 setvar z | |
3 | 1, 2 | wel 1391 | . . . . . 6 wff w ∈ z |
4 | vx | . . . . . . 7 setvar x | |
5 | 1, 4 | wel 1391 | . . . . . 6 wff w ∈ x |
6 | 3, 5 | wi 4 | . . . . 5 wff (w ∈ z → w ∈ x) |
7 | 6, 1 | wal 1240 | . . . 4 wff ∀w(w ∈ z → w ∈ x) |
8 | vy | . . . . 5 setvar y | |
9 | 2, 8 | wel 1391 | . . . 4 wff z ∈ y |
10 | 7, 9 | wi 4 | . . 3 wff (∀w(w ∈ z → w ∈ x) → z ∈ y) |
11 | 10, 2 | wal 1240 | . 2 wff ∀z(∀w(w ∈ z → w ∈ x) → z ∈ y) |
12 | 11, 8 | wex 1378 | 1 wff ∃y∀z(∀w(w ∈ z → w ∈ x) → z ∈ y) |
Colors of variables: wff set class |
This axiom is referenced by: zfpow 3919 axpow2 3920 |
Copyright terms: Public domain | W3C validator |