![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pwex | GIF version |
Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
pwex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
pwex | ⊢ 𝒫 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | pwexg 4209 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 𝒫 cpw 3601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 df-pw 3603 |
This theorem is referenced by: p0ex 4217 pp0ex 4218 ord3ex 4219 abexssex 6173 fnpm 6705 exmidpw 6959 pw1on 7280 pw1dom2 7281 pw1nel3 7285 sucpw1ne3 7286 sucpw1nel3 7287 npex 7527 axcnex 7913 pnfxr 8066 mnfxr 8070 ixxex 9959 istopon 14162 dmtopon 14172 fncld 14247 |
Copyright terms: Public domain | W3C validator |