 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  axi12 GIF version

Theorem axi12 1448
 Description: Proof that ax-i12 1439 follows from ax-bndl 1440. So that we can track which theorems rely on ax-bndl 1440, proofs should reference ax-i12 1439 rather than this theorem. (Contributed by Jim Kingdon, 17-Aug-2018.) (New usage is discouraged). (Proof modification is discouraged.)
Assertion
Ref Expression
axi12 (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))

Proof of Theorem axi12
StepHypRef Expression
1 ax-bndl 1440 . 2 (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
2 sp 1442 . . . 4 (∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
32orim2i 711 . . 3 ((∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) → (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
43orim2i 711 . 2 ((∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) → (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))))
51, 4ax-mp 7 1 (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∨ wo 662  ∀wal 1283   = wceq 1285 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-bndl 1440  ax-4 1441 This theorem depends on definitions:  df-bi 115 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator