ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfixp GIF version

Theorem dfixp 6594
Description: Eliminate the expression {𝑥𝑥𝐴} in df-ixp 6593, under the assumption that 𝐴 and 𝑥 are disjoint. This way, we can say that 𝑥 is bound in X𝑥𝐴𝐵 even if it appears free in 𝐴. (Contributed by Mario Carneiro, 12-Aug-2016.)
Assertion
Ref Expression
dfixp X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
Distinct variable groups:   𝑥,𝑓,𝐴   𝐵,𝑓   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem dfixp
StepHypRef Expression
1 df-ixp 6593 . 2 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
2 abid2 2260 . . . . 5 {𝑥𝑥𝐴} = 𝐴
32fneq2i 5218 . . . 4 (𝑓 Fn {𝑥𝑥𝐴} ↔ 𝑓 Fn 𝐴)
43anbi1i 453 . . 3 ((𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
54abbii 2255 . 2 {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
61, 5eqtri 2160 1 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1331  wcel 1480  {cab 2125  wral 2416   Fn wfn 5118  cfv 5123  Xcixp 6592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-fn 5126  df-ixp 6593
This theorem is referenced by:  ixpsnval  6595  elixp2  6596  ixpeq1  6603  cbvixp  6609  ixp0x  6620
  Copyright terms: Public domain W3C validator