![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqneqall | GIF version |
Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
Ref | Expression |
---|---|
eqneqall | ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2250 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | pm2.24 584 | . 2 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵 → 𝜑)) | |
3 | 1, 2 | syl5bi 150 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1285 ≠ wne 2249 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-in2 578 |
This theorem depends on definitions: df-bi 115 df-ne 2250 |
This theorem is referenced by: eldju2ndl 6566 eldju2ndr 6567 modfzo0difsn 9547 nno 10531 prm2orodd 10733 |
Copyright terms: Public domain | W3C validator |