ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falortru GIF version

Theorem falortru 1314
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
falortru ((⊥ ∨ ⊤) ↔ ⊤)

Proof of Theorem falortru
StepHypRef Expression
1 tru 1263 . . 3
21olci 661 . 2 (⊥ ∨ ⊤)
32bitru 1271 1 ((⊥ ∨ ⊤) ↔ ⊤)
Colors of variables: wff set class
Syntax hints:  wb 102  wo 639  wtru 1260  wfal 1264
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640
This theorem depends on definitions:  df-bi 114  df-tru 1262
This theorem is referenced by:  falxortru  1328
  Copyright terms: Public domain W3C validator