Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  gencl GIF version

Theorem gencl 2603
 Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
Hypotheses
Ref Expression
gencl.1 (𝜃 ↔ ∃𝑥(𝜒𝐴 = 𝐵))
gencl.2 (𝐴 = 𝐵 → (𝜑𝜓))
gencl.3 (𝜒𝜑)
Assertion
Ref Expression
gencl (𝜃𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜒(𝑥)   𝜃(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem gencl
StepHypRef Expression
1 gencl.1 . 2 (𝜃 ↔ ∃𝑥(𝜒𝐴 = 𝐵))
2 gencl.3 . . . . 5 (𝜒𝜑)
3 gencl.2 . . . . 5 (𝐴 = 𝐵 → (𝜑𝜓))
42, 3syl5ib 147 . . . 4 (𝐴 = 𝐵 → (𝜒𝜓))
54impcom 120 . . 3 ((𝜒𝐴 = 𝐵) → 𝜓)
65exlimiv 1505 . 2 (∃𝑥(𝜒𝐴 = 𝐵) → 𝜓)
71, 6sylbi 118 1 (𝜃𝜓)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   ↔ wb 102   = wceq 1259  ∃wex 1397 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-gen 1354  ax-ie2 1399  ax-17 1435 This theorem depends on definitions:  df-bi 114 This theorem is referenced by:  2gencl  2604  3gencl  2605  axprecex  7012  axpre-ltirr  7014
 Copyright terms: Public domain W3C validator