Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoeq2 GIF version

Theorem isoeq2 5469
 Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq2 (𝑅 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵)))

Proof of Theorem isoeq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 3793 . . . . 5 (𝑅 = 𝑇 → (𝑥𝑅𝑦𝑥𝑇𝑦))
21bibi1d 226 . . . 4 (𝑅 = 𝑇 → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑥𝑇𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
322ralbidv 2365 . . 3 (𝑅 = 𝑇 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑇𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
43anbi2d 445 . 2 (𝑅 = 𝑇 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑇𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))))
5 df-isom 4938 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
6 df-isom 4938 . 2 (𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑇𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
74, 5, 63bitr4g 216 1 (𝑅 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   ↔ wb 102   = wceq 1259  ∀wral 2323   class class class wbr 3791  –1-1-onto→wf1o 4928  ‘cfv 4929   Isom wiso 4930 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-4 1416  ax-17 1435  ax-ial 1443  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-nf 1366  df-cleq 2049  df-clel 2052  df-ral 2328  df-br 3792  df-isom 4938 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator