ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.4 GIF version

Theorem pm3.4 326
Description: Conjunction implies implication. Theorem *3.4 of [WhiteheadRussell] p. 113. (Contributed by NM, 31-Jul-1995.)
Assertion
Ref Expression
pm3.4 ((𝜑𝜓) → (𝜑𝜓))

Proof of Theorem pm3.4
StepHypRef Expression
1 simpr 108 . 2 ((𝜑𝜓) → 𝜓)
21a1d 22 1 ((𝜑𝜓) → (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia2 105
This theorem is referenced by:  dcim  818  pclem6  1306  sbequ1  1692  sbequ8  1769  en2lp  4305
  Copyright terms: Public domain W3C validator