ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl2and GIF version

Theorem syl2and 289
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.)
Hypotheses
Ref Expression
syl2and.1 (𝜑 → (𝜓𝜒))
syl2and.2 (𝜑 → (𝜃𝜏))
syl2and.3 (𝜑 → ((𝜒𝜏) → 𝜂))
Assertion
Ref Expression
syl2and (𝜑 → ((𝜓𝜃) → 𝜂))

Proof of Theorem syl2and
StepHypRef Expression
1 syl2and.1 . 2 (𝜑 → (𝜓𝜒))
2 syl2and.2 . . 3 (𝜑 → (𝜃𝜏))
3 syl2and.3 . . 3 (𝜑 → ((𝜒𝜏) → 𝜂))
42, 3sylan2d 288 . 2 (𝜑 → ((𝜒𝜃) → 𝜂))
51, 4syland 287 1 (𝜑 → ((𝜓𝜃) → 𝜂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  anim12d  328  recexprlem1ssl  6885  recexprlem1ssu  6886  fzen  9138  bezoutlembi  10538  rpmulgcd2  10621
  Copyright terms: Public domain W3C validator