ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylanr2 GIF version

Theorem sylanr2 391
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.)
Hypotheses
Ref Expression
sylanr2.1 (𝜑𝜃)
sylanr2.2 ((𝜓 ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
sylanr2 ((𝜓 ∧ (𝜒𝜑)) → 𝜏)

Proof of Theorem sylanr2
StepHypRef Expression
1 sylanr2.1 . . 3 (𝜑𝜃)
21anim2i 328 . 2 ((𝜒𝜑) → (𝜒𝜃))
3 sylanr2.2 . 2 ((𝜓 ∧ (𝜒𝜃)) → 𝜏)
42, 3sylan2 274 1 ((𝜓 ∧ (𝜒𝜑)) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem is referenced by:  adantrrl  463  adantrrr  464  1stconst  5870  2ndconst  5871  ltexprlemopl  6757  ltexprlemopu  6759  mulsub  7470  fzsubel  9025  expsubap  9468
  Copyright terms: Public domain W3C validator