MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jaao Structured version   Visualization version   GIF version

Theorem 3jaao 1395
Description: Inference conjoining and disjoining the antecedents of three implications. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Hypotheses
Ref Expression
3jaao.1 (𝜑 → (𝜓𝜒))
3jaao.2 (𝜃 → (𝜏𝜒))
3jaao.3 (𝜂 → (𝜁𝜒))
Assertion
Ref Expression
3jaao ((𝜑𝜃𝜂) → ((𝜓𝜏𝜁) → 𝜒))

Proof of Theorem 3jaao
StepHypRef Expression
1 3jaao.1 . . 3 (𝜑 → (𝜓𝜒))
213ad2ant1 1081 . 2 ((𝜑𝜃𝜂) → (𝜓𝜒))
3 3jaao.2 . . 3 (𝜃 → (𝜏𝜒))
433ad2ant2 1082 . 2 ((𝜑𝜃𝜂) → (𝜏𝜒))
5 3jaao.3 . . 3 (𝜂 → (𝜁𝜒))
653ad2ant3 1083 . 2 ((𝜑𝜃𝜂) → (𝜁𝜒))
72, 4, 63jaod 1391 1 ((𝜑𝜃𝜂) → ((𝜓𝜏𝜁) → 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1036  w3a 1037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039
This theorem is referenced by:  lpni  27316  3ornot23  38541
  Copyright terms: Public domain W3C validator