HomeHome Metamath Proof Explorer
Theorem List (Table of Contents)
< Wrap  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page:  Detailed Table of Contents  Page List

Table of Contents Summary
PART 1  CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
      1.1  Pre-logic
      1.2  Propositional calculus
      1.3  Other axiomatizations related to classical propositional calculus
      1.4  Predicate calculus with equality: Tarski's system S2 (1 rule, 6 schemes)
      1.5  Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
      1.6  Existential uniqueness
      1.7  Other axiomatizations related to classical predicate calculus
PART 2  ZF (ZERMELO-FRAENKEL) SET THEORY
      2.1  ZF Set Theory - start with the Axiom of Extensionality
      2.2  ZF Set Theory - add the Axiom of Replacement
      2.3  ZF Set Theory - add the Axiom of Power Sets
      2.4  ZF Set Theory - add the Axiom of Union
      2.5  ZF Set Theory - add the Axiom of Regularity
      2.6  ZF Set Theory - add the Axiom of Infinity
PART 3  ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
      3.1  ZFC Set Theory - add Countable Choice and Dependent Choice
      3.2  ZFC Set Theory - add the Axiom of Choice
      3.3  ZFC Axioms with no distinct variable requirements
      3.4  The Generalized Continuum Hypothesis
PART 4  TG (TARSKI-GROTHENDIECK) SET THEORY
      4.1  Inaccessibles
      4.2  ZFC Set Theory plus the Tarski-Grothendieck Axiom
PART 5  REAL AND COMPLEX NUMBERS
      5.1  Construction and axiomatization of real and complex numbers
      5.2  Derive the basic properties from the field axioms
      5.3  Real and complex numbers - basic operations
      5.4  Integer sets
      5.5  Order sets
      5.6  Elementary integer functions
      5.7  Words over a set
      5.8  Reflexive and transitive closures of relations
      5.9  Elementary real and complex functions
      5.10  Elementary limits and convergence
      5.11  Elementary trigonometry
      5.12  Cardinality of real and complex number subsets
PART 6  ELEMENTARY NUMBER THEORY
      6.1  Elementary properties of divisibility
      6.2  Elementary prime number theory
PART 7  BASIC STRUCTURES
      7.1  Extensible structures
      7.2  Moore spaces
PART 8  BASIC CATEGORY THEORY
      8.1  Categories
      8.2  Arrows (disjointified hom-sets)
      8.3  Examples of categories
      8.4  Categorical constructions
PART 9  BASIC ORDER THEORY
      9.1  Presets and directed sets using extensible structures
      9.2  Posets and lattices using extensible structures
PART 10  BASIC ALGEBRAIC STRUCTURES
      10.1  Monoids
      10.2  Groups
      10.3  Abelian groups
      10.4  Rings
      10.5  Division rings and fields
      10.6  Left modules
      10.7  Vector spaces
      10.8  Ideals
      10.9  Associative algebras
      10.10  Abstract multivariate polynomials
      10.11  The complex numbers as an algebraic extensible structure
      10.12  Generalized pre-Hilbert and Hilbert spaces
PART 11  BASIC LINEAR ALGEBRA
      11.1  Vectors and free modules
      11.2  Matrices
      11.3  The determinant
      11.4  Polynomial matrices
      11.5  The characteristic polynomial
PART 12  BASIC TOPOLOGY
      12.1  Topology
      12.2  Filters and filter bases
      12.3  Uniform Structures and Spaces
      12.4  Metric spaces
      12.5  Complex metric vector spaces
PART 13  BASIC REAL AND COMPLEX ANALYSIS
      13.1  Continuity
      13.2  Integrals
      13.3  Derivatives
PART 14  BASIC REAL AND COMPLEX FUNCTIONS
      14.1  Polynomials
      14.2  Sequences and series
      14.3  Basic trigonometry
      14.4  Basic number theory
PART 15  ELEMENTARY GEOMETRY
      15.1  Definition and Tarski's Axioms of Geometry
      15.2  Tarskian Geometry
      15.3  Properties of geometries
      15.4  Geometry in Hilbert spaces
PART 16  GRAPH THEORY
      16.1  Undirected graphs - basics
      16.2  Eulerian paths and the Konigsberg Bridge problem
      16.3  The Friendship Theorem
PART 17  GUIDES AND MISCELLANEA
      17.1  Guides (conventions, explanations, and examples)
      17.2  Humor
      17.3  (Future - to be reviewed and classified)
PART 18  COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)
      18.1  Additional material on group theory (deprecated)
      18.2  Complex vector spaces
      18.3  Normed complex vector spaces
      18.4  Operators on complex vector spaces
      18.5  Inner product (pre-Hilbert) spaces
      18.6  Complex Banach spaces
      18.7  Complex Hilbert spaces
PART 19  COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
      19.1  Axiomatization of complex pre-Hilbert spaces
      19.2  Inner product and norms
      19.3  Cauchy sequences and completeness axiom
      19.4  Subspaces and projections
      19.5  Properties of Hilbert subspaces
      19.6  Operators on Hilbert spaces
      19.7  States on a Hilbert lattice and Godowski's equation
      19.8  Cover relation, atoms, exchange axiom, and modular symmetry
PART 20  SUPPLEMENTARY MATERIAL (USER'S MATHBOXES)
      20.1  Mathboxes for user contributions
      20.2  Mathbox for Stefan Allan
      20.3  Mathbox for Thierry Arnoux
      20.4  Mathbox for Jonathan Ben-Naim
      20.5  Mathbox for Mario Carneiro
      20.6  Mathbox for Filip Cernatescu
      20.7  Mathbox for Paul Chapman
      20.8  Mathbox for Scott Fenton
      20.9  Mathbox for Jeff Hankins
      20.10  Mathbox for Anthony Hart
      20.11  Mathbox for Chen-Pang He
      20.12  Mathbox for Jeff Hoffman
      20.13  Mathbox for Asger C. Ipsen
      20.14  Mathbox for BJ
      20.15  Mathbox for Jim Kingdon
      20.16  Mathbox for ML
      20.17  Mathbox for Wolf Lammen
      20.18  Mathbox for Brendan Leahy
      20.19  Mathbox for Jeff Madsen
      20.20  Mathbox for Giovanni Mascellani
      20.21  Mathbox for Rodolfo Medina
      20.22  Mathbox for Norm Megill
      20.23  Mathbox for OpenAI
      20.24  Mathbox for Stefan O'Rear
      20.25  Mathbox for Jon Pennant
      20.26  Mathbox for Richard Penner
      20.27  Mathbox for Stanislas Polu
      20.28  Mathbox for Steve Rodriguez
      20.29  Mathbox for Andrew Salmon
      20.30  Mathbox for Alan Sare
      20.31  Mathbox for Glauco Siliprandi
      20.32  Mathbox for Saveliy Skresanov
      20.33  Mathbox for Jarvin Udandy
      20.34  Mathbox for Alexander van der Vekens
      20.35  Mathbox for David A. Wheeler
      20.36  Mathbox for Kunhao Zheng

Detailed Table of Contents
(* means the section header has a description)
*PART 1  CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
      *1.1  Pre-logic
            *1.1.1  Inferences for assisting proof development   a1ii 1
      *1.2  Propositional calculus
            1.2.1  Recursively define primitive wffs for propositional calculus   wn 3
            *1.2.2  The axioms of propositional calculus   ax-mp 5
            *1.2.3  Logical implication   mp2 9
            *1.2.4  Logical negation   con4 110
            *1.2.5  Logical equivalence   wb 194
            *1.2.6  Logical disjunction and conjunction   wo 381
            *1.2.7  Miscellaneous theorems of propositional calculus   pm5.62 959
            *1.2.8  The conditional operator for propositions   wif 1005
            *1.2.9  The weak deduction theorem   elimh 1023
            1.2.10  Abbreviated conjunction and disjunction of three wff's   w3o 1029
            1.2.11  Logical 'nand' (Sheffer stroke)   wnan 1438
            1.2.12  Logical 'xor'   wxo 1455
            1.2.13  True and false constants   wal 1472
                  *1.2.13.1  Universal quantifier for use by df-tru   wal 1472
                  *1.2.13.2  Equality predicate for use by df-tru   cv 1473
                  1.2.13.3  Define the true and false constants   wtru 1475
            *1.2.14  Truth tables   truantru 1496
            *1.2.15  Half adder and full adder in propositional calculus   whad 1522
                  1.2.15.1  Full adder: sum   whad 1522
                  1.2.15.2  Full adder: carry   wcad 1535
      1.3  Other axiomatizations related to classical propositional calculus
            *1.3.1  Minimal implicational calculus   minimp 1550
            1.3.2  Derive the Lukasiewicz axioms from Meredith's sole axiom   meredith 1556
            1.3.3  Derive the standard axioms from the Lukasiewicz axioms   luklem1 1573
            *1.3.4  Derive Nicod's axiom from the standard axioms   nic-dfim 1584
            1.3.5  Derive the Lukasiewicz axioms from Nicod's axiom   nic-imp 1590
            1.3.6  Derive Nicod's Axiom from Lukasiewicz's First Sheffer Stroke Axiom   lukshef-ax1 1609
            1.3.7  Derive the Lukasiewicz Axioms from the Tarski-Bernays-Wajsberg Axioms   tbw-bijust 1613
            1.3.8  Derive the Tarski-Bernays-Wajsberg axioms from Meredith's First CO Axiom   merco1 1628
            1.3.9  Derive the Tarski-Bernays-Wajsberg axioms from Meredith's Second CO Axiom   merco2 1651
            1.3.10  Derive the Lukasiewicz axioms from the Russell-Bernays Axioms   rb-bijust 1664
            *1.3.11  Stoic logic non-modal portion (Chrysippus of Soli)   mptnan 1683
      *1.4  Predicate calculus with equality: Tarski's system S2 (1 rule, 6 schemes)
            *1.4.1  Universal quantifier (continued); define "exists" and "not free"   wex 1694
            1.4.2  Rule scheme ax-gen (Generalization)   ax-gen 1700
            1.4.3  Axiom scheme ax-4 (Quantified Implication)   ax-4 1713
            1.4.4  Axiom scheme ax-5 (Distinctness) - first use of $d   ax-5 1793
            *1.4.5  Equality predicate (continued)   weq 1824
            1.4.6  Define proper substitution   wsb 1830
            1.4.7  Axiom scheme ax-6 (Existence)   ax-6 1838
            1.4.8  Axiom scheme ax-7 (Equality)   ax-7 1885
            1.4.9  Membership predicate   wcel 1938
            1.4.10  Axiom scheme ax-8 (Left Equality for Binary Predicate)   ax-8 1940
            1.4.11  Axiom scheme ax-9 (Right Equality for Binary Predicate)   ax-9 1947
            *1.4.12  Logical redundancy of ax-10 , ax-11 , ax-12 , ax-13   ax6dgen 1953
      *1.5  Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
            1.5.1  Axiom scheme ax-10 (Quantified Negation)   ax-10 1966
            1.5.2  Axiom scheme ax-11 (Quantifier Commutation)   ax-11 1971
            1.5.3  Axiom scheme ax-12 (Substitution)   ax-12 1983
            1.5.4  Axiom scheme ax-13 (Quantified Equality)   ax-13 2137
      1.6  Existential uniqueness
      1.7  Other axiomatizations related to classical predicate calculus
            *1.7.1  Aristotelian logic: Assertic syllogisms   barbara 2455
            *1.7.2  Intuitionistic logic   axia1 2479
*PART 2  ZF (ZERMELO-FRAENKEL) SET THEORY
      2.1  ZF Set Theory - start with the Axiom of Extensionality
            2.1.1  Introduce the Axiom of Extensionality   ax-ext 2494
            2.1.2  Class abstractions (a.k.a. class builders)   cab 2500
            2.1.3  Class form not-free predicate   wnfc 2642
            2.1.4  Negated equality and membership   wne 2684
                  2.1.4.1  Negated equality   neii 2688
                  2.1.4.2  Negated membership   neli 2789
            2.1.5  Restricted quantification   wral 2800
            2.1.6  The universal class   cvv 3077
            *2.1.7  Conditional equality (experimental)   wcdeq 3289
            2.1.8  Russell's Paradox   ru 3305
            2.1.9  Proper substitution of classes for sets   wsbc 3306
            2.1.10  Proper substitution of classes for sets into classes   csb 3403
            2.1.11  Define basic set operations and relations   cdif 3441
            2.1.12  Subclasses and subsets   df-ss 3458
            2.1.13  The difference, union, and intersection of two classes   difeq1 3587
                  2.1.13.1  The difference of two classes   difeq1 3587
                  2.1.13.2  The union of two classes   elun 3619
                  2.1.13.3  The intersection of two classes   elin 3662
                  2.1.13.4  The symmetric difference of two classes   csymdif 3708
                  2.1.13.5  Combinations of difference, union, and intersection of two classes   unabs 3719
                  2.1.13.6  Class abstractions with difference, union, and intersection of two classes   unab 3756
                  2.1.13.7  Restricted uniqueness with difference, union, and intersection   reuss2 3769
            2.1.14  The empty set   c0 3777
            *2.1.15  "Weak deduction theorem" for set theory   cif 3939
            2.1.16  Power classes   cpw 4011
            2.1.17  Unordered and ordered pairs   snjust 4027
            2.1.18  The union of a class   cuni 4270
            2.1.19  The intersection of a class   cint 4308
            2.1.20  Indexed union and intersection   ciun 4353
            2.1.21  Disjointness   wdisj 4451
            2.1.22  Binary relations   wbr 4481
            2.1.23  Ordered-pair class abstractions (class builders)   copab 4540
            2.1.24  Transitive classes   wtr 4578
      2.2  ZF Set Theory - add the Axiom of Replacement
            2.2.1  Introduce the Axiom of Replacement   ax-rep 4597
            2.2.2  Derive the Axiom of Separation   axsep 4606
            2.2.3  Derive the Null Set Axiom   zfnuleu 4612
            2.2.4  Theorems requiring subset and intersection existence   nalset 4622
            2.2.5  Theorems requiring empty set existence   class2set 4657
      2.3  ZF Set Theory - add the Axiom of Power Sets
            2.3.1  Introduce the Axiom of Power Sets   ax-pow 4668
            2.3.2  Derive the Axiom of Pairing   zfpair 4730
            2.3.3  Ordered pair theorem   opnz 4766
            2.3.4  Ordered-pair class abstractions (cont.)   opabid 4801
            2.3.5  Power class of union and intersection   pwin 4836
            2.3.6  Epsilon and identity relations   cep 4841
            2.3.7  Partial and complete ordering   wpo 4851
            2.3.8  Founded and well-ordering relations   wfr 4888
            2.3.9  Relations   cxp 4930
            2.3.10  The Predecessor Class   cpred 5486
            2.3.11  Well-founded induction   tz6.26 5518
            2.3.12  Ordinals   word 5529
            2.3.13  Definite description binder (inverted iota)   cio 5651
            2.3.14  Functions   wfun 5683
            2.3.15  Cantor's Theorem   canth 6384
            2.3.16  Restricted iota (description binder)   crio 6386
            2.3.17  Operations   co 6425
            2.3.18  "Maps to" notation   mpt2ndm0 6648
            2.3.19  Function operation   cof 6668
            2.3.20  Proper subset relation   crpss 6709
      2.4  ZF Set Theory - add the Axiom of Union
            2.4.1  Introduce the Axiom of Union   ax-un 6722
            2.4.2  Ordinals (continued)   ordon 6749
            2.4.3  Transfinite induction   tfi 6820
            2.4.4  The natural numbers (i.e. finite ordinals)   com 6832
            2.4.5  Peano's postulates   peano1 6852
            2.4.6  Finite induction (for finite ordinals)   find 6858
            2.4.7  First and second members of an ordered pair   c1st 6931
            *2.4.8  The support of functions   csupp 7056
            *2.4.9  Special "Maps to" operations   opeliunxp2f 7097
            2.4.10  Function transposition   ctpos 7112
            2.4.11  Curry and uncurry   ccur 7152
            2.4.12  Undefined values   cund 7159
            2.4.13  Well-founded recursion   cwrecs 7167
            2.4.14  Functions on ordinals; strictly monotone ordinal functions   iunon 7197
            2.4.15  "Strong" transfinite recursion   crecs 7229
            2.4.16  Recursive definition generator   crdg 7267
            2.4.17  Finite recursion   frfnom 7292
            2.4.18  Ordinal arithmetic   c1o 7315
            2.4.19  Natural number arithmetic   nna0 7446
            2.4.20  Equivalence relations and classes   wer 7501
            2.4.21  The mapping operation   cmap 7619
            2.4.22  Infinite Cartesian products   cixp 7669
            2.4.23  Equinumerosity   cen 7713
            2.4.24  Schroeder-Bernstein Theorem   sbthlem1 7830
            2.4.25  Equinumerosity (cont.)   xpf1o 7882
            2.4.26  Pigeonhole Principle   phplem1 7899
            2.4.27  Finite sets   onomeneq 7910
            2.4.28  Finitely supported functions   cfsupp 8033
            2.4.29  Finite intersections   cfi 8074
            2.4.30  Hall's marriage theorem   marypha1lem 8097
            2.4.31  Supremum and infimum   csup 8104
            2.4.32  Ordinal isomorphism, Hartog's theorem   coi 8172
            2.4.33  Hartogs function, order types, weak dominance   char 8219
      2.5  ZF Set Theory - add the Axiom of Regularity
            2.5.1  Introduce the Axiom of Regularity   ax-reg 8255
            2.5.2  Axiom of Infinity equivalents   inf0 8276
      2.6  ZF Set Theory - add the Axiom of Infinity
            2.6.1  Introduce the Axiom of Infinity   ax-inf 8293
            2.6.2  Existence of omega (the set of natural numbers)   omex 8298
            2.6.3  Cantor normal form   ccnf 8316
            2.6.4  Transitive closure   trcl 8362
            2.6.5  Rank   cr1 8383
            2.6.6  Scott's trick; collection principle; Hilbert's epsilon   scottex 8506
            2.6.7  Cardinal numbers   ccrd 8519
            2.6.8  Axiom of Choice equivalents   wac 8696
            2.6.9  Cardinal number arithmetic   ccda 8747
            2.6.10  The Ackermann bijection   ackbij2lem1 8799
            2.6.11  Cofinality (without Axiom of Choice)   cflem 8826
            2.6.12  Eight inequivalent definitions of finite set   sornom 8857
            2.6.13  Hereditarily size-limited sets without Choice   itunifval 8996
*PART 3  ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
      3.1  ZFC Set Theory - add Countable Choice and Dependent Choice
            3.1.1  Introduce the Axiom of Countable Choice   ax-cc 9015
            3.1.2  Introduce the Axiom of Dependent Choice   ax-dc 9026
      3.2  ZFC Set Theory - add the Axiom of Choice
            3.2.1  Introduce the Axiom of Choice   ax-ac 9039
            3.2.2  AC equivalents: well-ordering, Zorn's lemma   numthcor 9074
            3.2.3  Cardinal number theorems using Axiom of Choice   cardval 9122
            3.2.4  Cardinal number arithmetic using Axiom of Choice   iunctb 9150
            3.2.5  Cofinality using Axiom of Choice   alephreg 9158
      3.3  ZFC Axioms with no distinct variable requirements
      3.4  The Generalized Continuum Hypothesis
            3.4.1  Sets satisfying the Generalized Continuum Hypothesis   cgch 9196
            3.4.2  Derivation of the Axiom of Choice   gchaclem 9254
*PART 4  TG (TARSKI-GROTHENDIECK) SET THEORY
      4.1  Inaccessibles
            4.1.1  Weakly and strongly inaccessible cardinals   cwina 9258
            4.1.2  Weak universes   cwun 9276
            4.1.3  Tarski classes   ctsk 9324
            4.1.4  Grothendieck universes   cgru 9366
      4.2  ZFC Set Theory plus the Tarski-Grothendieck Axiom
            4.2.1  Introduce the Tarski-Grothendieck Axiom   ax-groth 9399
            4.2.2  Derive the Power Set, Infinity and Choice Axioms   grothpw 9402
            4.2.3  Tarski map function   ctskm 9413
*PART 5  REAL AND COMPLEX NUMBERS
      5.1  Construction and axiomatization of real and complex numbers
            5.1.1  Dedekind-cut construction of real and complex numbers   cnpi 9420
            5.1.2  Final derivation of real and complex number postulates   axaddf 9720
            5.1.3  Real and complex number postulates restated as axioms   ax-cnex 9746
      5.2  Derive the basic properties from the field axioms
            5.2.1  Some deductions from the field axioms for complex numbers   cnex 9771
            5.2.2  Infinity and the extended real number system   cpnf 9825
            5.2.3  Restate the ordering postulates with extended real "less than"   axlttri 9858
            5.2.4  Ordering on reals   lttr 9863
            5.2.5  Initial properties of the complex numbers   mul12 9952
      5.3  Real and complex numbers - basic operations
            5.3.1  Addition   add12 10003
            5.3.2  Subtraction   cmin 10016
            5.3.3  Multiplication   kcnktkm1cn 10211
            5.3.4  Ordering on reals (cont.)   gt0ne0 10241
            5.3.5  Reciprocals   ixi 10404
            5.3.6  Division   cdiv 10432
            5.3.7  Ordering on reals (cont.)   elimgt0 10607
            5.3.8  Completeness Axiom and Suprema   fimaxre 10717
            5.3.9  Imaginary and complex number properties   inelr 10764
            5.3.10  Function operation analogue theorems   ofsubeq0 10771
      5.4  Integer sets
            5.4.1  Positive integers (as a subset of complex numbers)   cn 10774
            5.4.2  Principle of mathematical induction   nnind 10792
            *5.4.3  Decimal representation of numbers   c2 10824
            *5.4.4  Some properties of specific numbers   neg1cn 10878
            5.4.5  Simple number properties   halfcl 11011
            5.4.6  The Archimedean property   nnunb 11042
            5.4.7  Nonnegative integers (as a subset of complex numbers)   cn0 11046
            5.4.8  Integers (as a subset of complex numbers)   cz 11117
            5.4.9  Decimal arithmetic   cdc 11232
            5.4.10  Upper sets of integers   cuz 11426
            5.4.11  Well-ordering principle for bounded-below sets of integers   uzwo3 11524
            5.4.12  Rational numbers (as a subset of complex numbers)   cq 11529
            5.4.13  Existence of the set of complex numbers   rpnnen1lem2 11555
      5.5  Order sets
            5.5.1  Positive reals (as a subset of complex numbers)   crp 11573
            5.5.2  Infinity and the extended real number system (cont.)   cxne 11684
            5.5.3  Supremum and infimum on the extended reals   xrsupexmnf 11872
            5.5.4  Real number intervals   cioo 11914
            5.5.5  Finite intervals of integers   cfz 12064
            *5.5.6  Finite intervals of nonnegative integers   elfz2nn0 12167
            5.5.7  Half-open integer ranges   cfzo 12201
      5.6  Elementary integer functions
            5.6.1  The floor and ceiling functions   cfl 12320
            5.6.2  The modulo (remainder) operation   cmo 12397
            5.6.3  Miscellaneous theorems about integers   om2uz0i 12475
            5.6.4  Strong induction over upper sets of integers   uzsinds 12515
            5.6.5  Finitely supported functions over the nonnegative integers   fsuppmapnn0fiublem 12518
            5.6.6  The infinite sequence builder "seq"   cseq 12530
            5.6.7  Integer powers   cexp 12589
            5.6.8  Ordered pair theorem for nonnegative integers   nn0le2msqi 12783
            5.6.9  Factorial function   cfa 12789
            5.6.10  The binomial coefficient operation   cbc 12818
            5.6.11  The ` # ` (set size) function   chash 12846
                  5.6.11.1  Proper unordered pairs and triples (sets of size 2 and 3)   hashprlei 12970
                  5.6.11.2  Finite induction on the size of the first component of a binary relation   brfi1indlem 12990
      *5.7  Words over a set
            5.7.1  Definitions and basic theorems   cword 13003
            5.7.2  Last symbol of a word   lsw 13061
            5.7.3  Concatenations of words   ccatfn 13067
            5.7.4  Singleton words   ids1 13087
            5.7.5  Concatenations with singleton words   ccatws1cl 13106
            5.7.6  Subwords   swrdval 13126
            5.7.7  Subwords of subwords   swrdswrdlem 13168
            5.7.8  Subwords and concatenations   wrdcctswrd 13174
            5.7.9  Subwords of concatenations   swrdccatfn 13190
            5.7.10  Splicing words (substring replacement)   splval 13210
            5.7.11  Reversing words   revval 13217
            5.7.12  Repeated symbol words   reps 13225
            *5.7.13  Cyclical shifts of words   ccsh 13242
            5.7.14  Mapping words by a function   wrdco 13285
            5.7.15  Longer string literals   cs2 13294
      *5.8  Reflexive and transitive closures of relations
            5.8.1  The reflexive and transitive properties of relations   coss12d 13416
            5.8.2  Basic properties of closures   cleq1lem 13426
            5.8.3  Definitions and basic properties of transitive closures   ctcl 13429
            5.8.4  Exponentiation of relations   crelexp 13465
            5.8.5  Reflexive-transitive closure as an indexed union   crtrcl 13500
            *5.8.6  Principle of transitive induction.   relexpindlem 13508
      5.9  Elementary real and complex functions
            5.9.1  The "shift" operation   cshi 13511
            5.9.2  Signum (sgn or sign) function   csgn 13531
            5.9.3  Real and imaginary parts; conjugate   ccj 13541
            5.9.4  Square root; absolute value   csqrt 13678
      5.10  Elementary limits and convergence
            5.10.1  Superior limit (lim sup)   clsp 13906
            5.10.2  Limits   cli 13927
            5.10.3  Finite and infinite sums   csu 14131
            5.10.4  The binomial theorem   binomlem 14267
            5.10.5  The inclusion/exclusion principle   incexclem 14274
            5.10.6  Infinite sums (cont.)   isumshft 14277
            5.10.7  Miscellaneous converging and diverging sequences   divrcnv 14290
            5.10.8  Arithmetic series   arisum 14298
            5.10.9  Geometric series   expcnv 14302
            5.10.10  Ratio test for infinite series convergence   cvgrat 14321
            5.10.11  Mertens' theorem   mertenslem1 14322
            5.10.12  Finite and infinite products   prodf 14325
                  5.10.12.1  Product sequences   prodf 14325
                  5.10.12.2  Non-trivial convergence   ntrivcvg 14335
                  5.10.12.3  Complex products   cprod 14341
                  5.10.12.4  Finite products   fprod 14377
                  5.10.12.5  Infinite products   iprodclim 14435
            5.10.13  Falling and Rising Factorial   cfallfac 14441
            5.10.14  Bernoulli polynomials and sums of k-th powers   cbp 14483
      5.11  Elementary trigonometry
            5.11.1  The exponential, sine, and cosine functions   ce 14498
            5.11.2  _e is irrational   eirrlem 14638
      5.12  Cardinality of real and complex number subsets
            5.12.1  Countability of integers and rationals   xpnnen 14645
            5.12.2  The reals are uncountable   rpnnen2lem1 14649
*PART 6  ELEMENTARY NUMBER THEORY
      6.1  Elementary properties of divisibility
            6.1.1  Irrationality of square root of 2   sqr2irrlem 14683
            6.1.2  Some Number sets are chains of proper subsets   nthruc 14686
            6.1.3  The divides relation   cdvds 14688
            *6.1.4  Even and odd numbers   evenelz 14765
            6.1.5  The division algorithm   divalglem0 14821
            6.1.6  Bit sequences   cbits 14849
            6.1.7  The greatest common divisor operator   cgcd 14925
            6.1.8  Bézout's identity   bezoutlem1 14965
            6.1.9  Algorithms   nn0seqcvgd 14995
            6.1.10  Euclid's Algorithm   eucalgval2 15006
            *6.1.11  The least common multiple   clcm 15013
            *6.1.12  Coprimality and Euclid's lemma   coprmgcdb 15074
            6.1.13  Cancellability of congruences   congr 15090
      6.2  Elementary prime number theory
            *6.2.1  Elementary properties   cprime 15097
            *6.2.2  Coprimality and Euclid's lemma (cont.)   coprm 15135
            6.2.3  Properties of the canonical representation of a rational   cnumer 15153
            6.2.4  Euler's theorem   codz 15180
            6.2.5  Arithmetic modulo a prime number   modprm1div 15222
            6.2.6  Pythagorean Triples   coprimeprodsq 15233
            6.2.7  The prime count function   cpc 15261
            6.2.8  Pocklington's theorem   prmpwdvds 15328
            6.2.9  Infinite primes theorem   unbenlem 15332
            6.2.10  Sum of prime reciprocals   prmreclem1 15340
            6.2.11  Fundamental theorem of arithmetic   1arithlem1 15347
            6.2.12  Lagrange's four-square theorem   cgz 15353
            6.2.13  Van der Waerden's theorem   cvdwa 15389
            6.2.14  Ramsey's theorem   cram 15423
            *6.2.15  Primorial function   cprmo 15455
            *6.2.16  Prime gaps   prmgaplem1 15473
            6.2.17  Decimal arithmetic (cont.)   dec2dvds 15487
            6.2.18  Cyclical shifts of words (cont.)   cshwsidrepsw 15520
            6.2.19  Specific prime numbers   prmlem0 15532
            6.2.20  Very large primes   1259lem1 15558
PART 7  BASIC STRUCTURES
      7.1  Extensible structures
            *7.1.1  Basic definitions   cstr 15573
            7.1.2  Slot definitions   cplusg 15650
            7.1.3  Definition of the structure product   crest 15786
            7.1.4  Definition of the structure quotient   cordt 15864
      7.2  Moore spaces
            7.2.1  Moore closures   mrcflem 15979
            7.2.2  Independent sets in a Moore system   mrisval 16003
            7.2.3  Algebraic closure systems   isacs 16025
PART 8  BASIC CATEGORY THEORY
      8.1  Categories
            8.1.1  Categories   ccat 16038
            8.1.2  Opposite category   coppc 16084
            8.1.3  Monomorphisms and epimorphisms   cmon 16101
            8.1.4  Sections, inverses, isomorphisms   csect 16117
            *8.1.5  Isomorphic objects   ccic 16168
            8.1.6  Subcategories   cssc 16180
            8.1.7  Functors   cfunc 16227
            8.1.8  Full & faithful functors   cful 16275
            8.1.9  Natural transformations and the functor category   cnat 16314
            8.1.10  Initial, terminal and zero objects of a category   cinito 16351
      8.2  Arrows (disjointified hom-sets)
            8.2.1  Identity and composition for arrows   cida 16416
      8.3  Examples of categories
            8.3.1  The category of sets   csetc 16438
            8.3.2  The category of categories   ccatc 16457
            *8.3.3  The category of extensible structures   fncnvimaeqv 16473
      8.4  Categorical constructions
            8.4.1  Product of categories   cxpc 16521
            8.4.2  Functor evaluation   cevlf 16562
            8.4.3  Hom functor   chof 16601
PART 9  BASIC ORDER THEORY
      9.1  Presets and directed sets using extensible structures
      9.2  Posets and lattices using extensible structures
            9.2.1  Posets   cpo 16653
            9.2.2  Lattices   clat 16758
            9.2.3  The dual of an ordered set   codu 16841
            9.2.4  Subset order structures   cipo 16864
            9.2.5  Distributive lattices   latmass 16901
            9.2.6  Posets and lattices as relations   cps 16911
            9.2.7  Directed sets, nets   cdir 16941
PART 10  BASIC ALGEBRAIC STRUCTURES
      10.1  Monoids
            *10.1.1  Magmas   cplusf 16952
            *10.1.2  Identity elements   mgmidmo 16972
            *10.1.3  Ordered sums in a magma   gsumvalx 16983
            *10.1.4  Semigroups   csgrp 16996
            *10.1.5  Definition and basic properties of monoids   cmnd 17007
            10.1.6  Monoid homomorphisms and submonoids   cmhm 17046
            *10.1.7  Ordered sums in a monoid   gsumvallem2 17085
            10.1.8  Free monoids   cfrmd 17097
            10.1.9  Examples and counterexamples for magmas, semigroups and monoids   mgm2nsgrplem1 17118
      10.2  Groups
            10.2.1  Definition and basic properties   cgrp 17135
            *10.2.2  Group multiple operation   cmg 17253
            10.2.3  Subgroups and Quotient groups   csubg 17301
            10.2.4  Elementary theory of group homomorphisms   cghm 17370
            10.2.5  Isomorphisms of groups   cgim 17412
            10.2.6  Group actions   cga 17435
            10.2.7  Centralizers and centers   ccntz 17461
            10.2.8  The opposite group   coppg 17488
            10.2.9  Symmetric groups   csymg 17510
                  *10.2.9.1  Definition and basic properties   csymg 17510
                  10.2.9.2  Cayley's theorem   cayleylem1 17545
                  10.2.9.3  Permutations fixing one element   symgfix2 17549
                  *10.2.9.4  Transpositions in the symmetric group   cpmtr 17574
                  10.2.9.5  The sign of a permutation   cpsgn 17622
            10.2.10  p-Groups and Sylow groups; Sylow's theorems   cod 17657
            10.2.11  Direct products   clsm 17778
            10.2.12  Free groups   cefg 17848
      10.3  Abelian groups
            10.3.1  Definition and basic properties   ccmn 17922
            10.3.2  Cyclic groups   ccyg 18007
            10.3.3  Group sum operation   gsumval3a 18032
            10.3.4  Group sums over (ranges of) integers   fsfnn0gsumfsffz 18107
            10.3.5  Internal direct products   cdprd 18120
            10.3.6  The Fundamental Theorem of Abelian Groups   ablfacrplem 18192
      10.4  Rings
            10.4.1  Multiplicative Group   cmgp 18217
            10.4.2  Ring unit   cur 18229
                  10.4.2.1  Semirings   csrg 18233
                  *10.4.2.2  The binomial theorem for semirings   srgbinomlem1 18268
            10.4.3  Definition and basic properties of unital rings   crg 18275
            10.4.4  Opposite ring   coppr 18350
            10.4.5  Divisibility   cdsr 18366
            10.4.6  Ring homomorphisms   crh 18440
      10.5  Division rings and fields
            10.5.1  Definition and basic properties   cdr 18475
            10.5.2  Subrings of a ring   csubrg 18504
            10.5.3  Absolute value (abstract algebra)   cabv 18544
            10.5.4  Star rings   cstf 18571
      10.6  Left modules
            10.6.1  Definition and basic properties   clmod 18591
            10.6.2  Subspaces and spans in a left module   clss 18655
            10.6.3  Homomorphisms and isomorphisms of left modules   clmhm 18742
            10.6.4  Subspace sum; bases for a left module   clbs 18797
      10.7  Vector spaces
            10.7.1  Definition and basic properties   clvec 18825
      10.8  Ideals
            10.8.1  The subring algebra; ideals   csra 18891
            10.8.2  Two-sided ideals and quotient rings   c2idl 18954
            10.8.3  Principal ideal rings. Divisibility in the integers   clpidl 18964
            10.8.4  Nonzero rings and zero rings   cnzr 18980
            10.8.5  Left regular elements. More kinds of rings   crlreg 19002
      10.9  Associative algebras
            10.9.1  Definition and basic properties   casa 19032
      10.10  Abstract multivariate polynomials
            10.10.1  Definition and basic properties   cmps 19074
            10.10.2  Polynomial evaluation   ces 19227
            *10.10.3  Additional definitions for (multivariate) polynomials   cmhp 19260
            *10.10.4  Univariate polynomials   cps1 19268
            10.10.5  Univariate polynomial evaluation   ces1 19401
      10.11  The complex numbers as an algebraic extensible structure
            10.11.1  Definition and basic properties   cpsmet 19453
            *10.11.2  Ring of integers   zring 19539
            10.11.3  Algebraic constructions based on the complex numbers   czrh 19571
            10.11.4  Signs as subgroup of the complex numbers   cnmsgnsubg 19646
            10.11.5  Embedding of permutation signs into a ring   zrhpsgnmhm 19653
            10.11.6  The ordered field of real numbers   crefld 19673
      10.12  Generalized pre-Hilbert and Hilbert spaces
            10.12.1  Definition and basic properties   cphl 19692
            10.12.2  Orthocomplements and closed subspaces   cocv 19724
            10.12.3  Orthogonal projection and orthonormal bases   cpj 19764
*PART 11  BASIC LINEAR ALGEBRA
      11.1  Vectors and free modules
            *11.1.1  Direct sum of left modules   cdsmm 19795
            *11.1.2  Free modules   cfrlm 19810
            *11.1.3  Standard basis (unit vectors)   cuvc 19841
            *11.1.4  Independent sets and families   clindf 19863
            11.1.5  Characterization of free modules   lmimlbs 19895
      *11.2  Matrices
            *11.2.1  The matrix multiplication   cmmul 19909
            *11.2.2  Square matrices   cmat 19933
            *11.2.3  The matrix algebra   matmulr 19964
            *11.2.4  Matrices of dimension 0 and 1   mat0dimbas0 19992
            *11.2.5  The subalgebras of diagonal and scalar matrices   cdmat 20014
            *11.2.6  Multiplication of a matrix with a "column vector"   cmvmul 20066
            11.2.7  Replacement functions for a square matrix   cmarrep 20082
            11.2.8  Submatrices   csubma 20102
      11.3  The determinant
            11.3.1  Definition and basic properties   cmdat 20110
            11.3.2  Determinants of 2 x 2 -matrices   m2detleiblem1 20150
            11.3.3  The matrix adjugate/adjunct   cmadu 20158
            *11.3.4  Laplace expansion of determinants (special case)   symgmatr01lem 20179
            11.3.5  Inverse matrix   invrvald 20202
            *11.3.6  Cramer's rule   slesolvec 20205
      *11.4  Polynomial matrices
            11.4.1  Basic properties   pmatring 20218
            *11.4.2  Constant polynomial matrices   ccpmat 20228
            *11.4.3  Collecting coefficients of polynomial matrices   cdecpmat 20287
            *11.4.4  Ring isomorphism between polynomial matrices and polynomials over matrices   cpm2mp 20317
      *11.5  The characteristic polynomial
            *11.5.1  Definition and basic properties   cchpmat 20351
            *11.5.2  The characteristic factor function G   fvmptnn04if 20374
            *11.5.3  The Cayley-Hamilton theorem   cpmadurid 20392
PART 12  BASIC TOPOLOGY
      12.1  Topology
            12.1.1  Topological spaces   ctop 20418
            12.1.2  TopBases for topologies   isbasisg 20463
            12.1.3  Examples of topologies   distop 20511
            12.1.4  Closure and interior   ccld 20531
            12.1.5  Neighborhoods   cnei 20612
            12.1.6  Limit points and perfect sets   clp 20649
            12.1.7  Subspace topologies   restrcl 20672
            12.1.8  Order topology   ordtbaslem 20703
            12.1.9  Limits and continuity in topological spaces   ccn 20739
            12.1.10  Separated spaces: T0, T1, T2 (Hausdorff) ...   ct0 20821
            12.1.11  Compactness   ccmp 20900
            12.1.12  Bolzano-Weierstrass theorem   bwth 20924
            12.1.13  Connectedness   ccon 20925
            12.1.14  First- and second-countability   c1stc 20951
            12.1.15  Local topological properties   clly 20978
            12.1.16  Refinements   cref 21016
            12.1.17  Compactly generated spaces   ckgen 21047
            12.1.18  Product topologies   ctx 21074
            12.1.19  Continuous function-builders   cnmptid 21175
            12.1.20  Quotient maps and quotient topology   ckq 21207
            12.1.21  Homeomorphisms   chmeo 21267
      12.2  Filters and filter bases
            12.2.1  Filter bases   elmptrab 21341
            12.2.2  Filters   cfil 21360
            12.2.3  Ultrafilters   cufil 21414
            12.2.4  Filter limits   cfm 21448
            12.2.5  Extension by continuity   ccnext 21574
            12.2.6  Topological groups   ctmd 21585
            12.2.7  Infinite group sum on topological groups   ctsu 21640
            12.2.8  Topological rings, fields, vector spaces   ctrg 21670
      12.3  Uniform Structures and Spaces
            12.3.1  Uniform structures   cust 21714
            12.3.2  The topology induced by an uniform structure   cutop 21745
            12.3.3  Uniform Spaces   cuss 21768
            12.3.4  Uniform continuity   cucn 21790
            12.3.5  Cauchy filters in uniform spaces   ccfilu 21801
            12.3.6  Complete uniform spaces   ccusp 21812
      12.4  Metric spaces
            12.4.1  Pseudometric spaces   ispsmet 21820
            12.4.2  Basic metric space properties   cxme 21832
            12.4.3  Metric space balls   blfvalps 21898
            12.4.4  Open sets of a metric space   mopnval 21953
            12.4.5  Continuity in metric spaces   metcnp3 22055
            12.4.6  The uniform structure generated by a metric   metuval 22064
            12.4.7  Examples of metric spaces   dscmet 22087
            12.4.8  Normed algebraic structures   cnm 22091
            12.4.9  Normed space homomorphisms (bounded linear operators)   cnmo 22206
            12.4.10  Topology on the reals   qtopbaslem 22279
            12.4.11  Topological definitions using the reals   cii 22407
            12.4.12  Path homotopy   chtpy 22498
            12.4.13  The fundamental group   cpco 22532
      12.5  Complex metric vector spaces
            12.5.1  Complex left modules   cclm 22594
            12.5.2  Complex vector spaces   ccvs 22636
            12.5.3  Complex pre-Hilbert space   ccph 22645
            12.5.4  Convergence and completeness   ccfil 22723
            12.5.5  Baire's Category Theorem   bcthlem1 22793
            12.5.6  Banach spaces and complex Hilbert spaces   ccms 22801
                  12.5.6.1  The complete ordered field of the real numbers   retopn 22839
            12.5.7  Euclidean spaces   crrx 22843
            12.5.8  Minimizing Vector Theorem   minveclem1 22867
            12.5.9  Projection Theorem   pjthlem1 22892
PART 13  BASIC REAL AND COMPLEX ANALYSIS
      13.1  Continuity
            13.1.1  Intermediate value theorem   pmltpclem1 22900
      13.2  Integrals
            13.2.1  Lebesgue measure   covol 22914
            13.2.2  Lebesgue integration   cmbf 23065
                  13.2.2.1  Lesbesgue integral   cmbf 23065
                  13.2.2.2  Lesbesgue directed integral   cdit 23292
      13.3  Derivatives
            13.3.1  Real and complex differentiation   climc 23308
                  13.3.1.1  Derivatives of functions of one complex or real variable   climc 23308
                  13.3.1.2  Results on real differentiation   dvferm1lem 23427
PART 14  BASIC REAL AND COMPLEX FUNCTIONS
      14.1  Polynomials
            14.1.1  Polynomial degrees   cmdg 23493
            14.1.2  The division algorithm for univariate polynomials   cmn1 23565
            14.1.3  Elementary properties of complex polynomials   cply 23629
            14.1.4  The division algorithm for polynomials   cquot 23734
            14.1.5  Algebraic numbers   caa 23758
            14.1.6  Liouville's approximation theorem   aalioulem1 23779
      14.2  Sequences and series
            14.2.1  Taylor polynomials and Taylor's theorem   ctayl 23799
            14.2.2  Uniform convergence   culm 23822
            14.2.3  Power series   pserval 23856
      14.3  Basic trigonometry
            14.3.1  The exponential, sine, and cosine functions (cont.)   efcn 23889
            14.3.2  Properties of pi = 3.14159...   pilem1 23897
            14.3.3  Mapping of the exponential function   efgh 23979
            14.3.4  The natural logarithm on complex numbers   clog 23993
            *14.3.5  Logarithms to an arbitrary base   clogb 24190
            14.3.6  Theorems of Pythagoras, isosceles triangles, and intersecting chords   angval 24219
            14.3.7  Solutions of quadratic, cubic, and quartic equations   quad2 24254
            14.3.8  Inverse trigonometric functions   casin 24277
            14.3.9  The Birthday Problem   log2ublem1 24361
            14.3.10  Areas in R^2   carea 24370
            14.3.11  More miscellaneous converging sequences   rlimcnp 24380
            14.3.12  Inequality of arithmetic and geometric means   cvxcl 24399
            14.3.13  Euler-Mascheroni constant   cem 24406
            14.3.14  Zeta function   czeta 24427
            14.3.15  Gamma function   clgam 24430
      14.4  Basic number theory
            14.4.1  Wilson's theorem   wilthlem1 24482
            14.4.2  The Fundamental Theorem of Algebra   ftalem1 24487
            14.4.3  The Basel problem (ζ(2) = π2/6)   basellem1 24497
            14.4.4  Number-theoretical functions   ccht 24507
            14.4.5  Perfect Number Theorem   mersenne 24642
            14.4.6  Characters of Z/nZ   cdchr 24647
            14.4.7  Bertrand's postulate   bcctr 24690
            *14.4.8  Quadratic residues and the Legendre symbol   clgs 24709
            *14.4.9  Gauss' Lemma   gausslemma2dlem0a 24771
            14.4.10  Quadratic reciprocity   lgseisenlem1 24790
            14.4.11  All primes 4n+1 are the sum of two squares   2sqlem1 24832
            14.4.12  Chebyshev's Weak Prime Number Theorem, Dirichlet's Theorem   chebbnd1lem1 24848
            14.4.13  The Prime Number Theorem   mudivsum 24909
            14.4.14  Ostrowski's theorem   abvcxp 24994
*PART 15  ELEMENTARY GEOMETRY
      15.1  Definition and Tarski's Axioms of Geometry
      15.2  Tarskian Geometry
            15.2.1  Congruence   tgcgrcomimp 25062
            15.2.2  Betweenness   tgbtwntriv2 25072
            15.2.3  Dimension   tglowdim1 25085
            15.2.4  Betweenness and Congruence   tgifscgr 25094
            15.2.5  Congruence of a series of points   ccgrg 25096
            15.2.6  Motions   cismt 25118
            15.2.7  Colinearity   tglng 25132
            15.2.8  Connectivity of betweenness   tgbtwnconn1lem1 25158
            15.2.9  Less-than relation in geometric congruences   cleg 25168
            15.2.10  Rays   chlg 25186
            15.2.11  Lines   btwnlng1 25205
            15.2.12  Point inversions   cmir 25238
            15.2.13  Right angles   crag 25279
            15.2.14  Half-planes   islnopp 25322
            15.2.15  Midpoints and Line Mirroring   cmid 25355
            15.2.16  Congruence of angles   ccgra 25390
            15.2.17  Angle Comparisons   cinag 25417
            15.2.18  Congruence Theorems   tgsas1 25426
            15.2.19  Equilateral triangles   ceqlg 25436
      15.3  Properties of geometries
            15.3.1  Isomorphisms between geometries   f1otrgds 25440
      15.4  Geometry in Hilbert spaces
            15.4.1  Geometry in the complex plane   cchhllem 25458
            15.4.2  Geometry in Euclidean spaces   cee 25459
                  15.4.2.1  Definition of the Euclidean space   cee 25459
                  15.4.2.2  Tarski's axioms for geometry for the Euclidean space   axdimuniq 25484
                  15.4.2.3  EE^n fulfills Tarski's Axioms   ceeng 25548
*PART 16  GRAPH THEORY
      16.1  Undirected graphs - basics
            16.1.1  Undirected hypergraphs   cuhg 25558
            16.1.2  Undirected multigraphs   cumg 25580
            16.1.3  Undirected simple graphs   cuslg 25597
                  16.1.3.1  Undirected simple graphs - basics   cuslg 25597
                  16.1.3.2  Undirected simple graphs - examples   usgraex0elv 25663
                  16.1.3.3  Finite undirected simple graphs   fiusgraedgfi 25675
            16.1.4  Neighbors, complete graphs and universal vertices   cnbgra 25685
                  16.1.4.1  Neighbors   nbgraop 25691
                  16.1.4.2  Complete graphs   iscusgra 25724
                  16.1.4.3  Universal vertices   isuvtx 25755
            16.1.5  Walks, paths and cycles   cwalk 25765
                  16.1.5.1  Walks and trails   relwlk 25785
                  16.1.5.2  Paths and simple paths   pths 25835
                  16.1.5.3  Circuits and cycles   crcts 25889
                  16.1.5.4  Connected graphs   cconngra 25936
                  16.1.5.5  Walks as words   cwwlk 25944
                  16.1.5.6  Closed walks   cclwlk 26014
                  16.1.5.7  Walks/paths of length 2 as ordered triples   c2wlkot 26120
            16.1.6  Vertex degree   cvdg 26159
            16.1.7  Regular graphs   crgra 26188
                  16.1.7.1  Definition and basic properties   crgra 26188
                  16.1.7.2  Walks in regular graphs   rusgranumwwlkl1 26212
      16.2  Eulerian paths and the Konigsberg Bridge problem
            16.2.1  Eulerian paths   ceup 26228
            16.2.2  The Konigsberg Bridge problem   vdeg0i 26248
      *16.3  The Friendship Theorem
            16.3.1  Friendship graphs - basics   cfrgra 26254
            16.3.2  The friendship theorem for small graphs   frgra1v 26264
            16.3.3  Theorems according to Mertzios and Unger   2pthfrgrarn 26275
            *16.3.4  Huneke's Proof of the Friendship Theorem   frgrancvvdeqlem1 26296
PART 17  GUIDES AND MISCELLANEA
      17.1  Guides (conventions, explanations, and examples)
            *17.1.1  Conventions   conventions 26389
            17.1.2  Natural deduction   natded 26391
            *17.1.3  Natural deduction examples   ex-natded5.2 26392
            17.1.4  Definitional examples   ex-or 26409
            17.1.5  Other examples   aevdemo 26448
      17.2  Humor
            17.2.1  April Fool's theorem   avril1 26450
      17.3  (Future - to be reviewed and classified)
            17.3.1  Planar incidence geometry   cplig 26457
            17.3.2  Algebra preliminaries   crpm 26462
            *17.3.3  Aliases kept to prevent broken links   dummylink 26464
*PART 18  COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)
      *18.1  Additional material on group theory (deprecated)
            18.1.1  Definitions and basic properties for groups   cgr 26466
            18.1.2  Abelian groups   cablo 26524
      18.2  Complex vector spaces
            18.2.1  Definition and basic properties   cvc 26539
            18.2.2  Examples of complex vector spaces   cnaddablo 26577
      18.3  Normed complex vector spaces
            18.3.1  Definition and basic properties   cnv 26580
            18.3.2  Examples of normed complex vector spaces   cnnv 26685
            18.3.3  Induced metric of a normed complex vector space   imsval 26694
            18.3.4  Inner product   cdip 26713
            18.3.5  Subspaces   css 26737
      18.4  Operators on complex vector spaces
            18.4.1  Definitions and basic properties   clno 26758
      18.5  Inner product (pre-Hilbert) spaces
            18.5.1  Definition and basic properties   ccphlo 26830
            18.5.2  Examples of pre-Hilbert spaces   cncph 26837
            18.5.3  Properties of pre-Hilbert spaces   isph 26840
      18.6  Complex Banach spaces
            18.6.1  Definition and basic properties   ccbn 26881
            18.6.2  Examples of complex Banach spaces   cnbn 26888
            18.6.3  Uniform Boundedness Theorem   ubthlem1 26889
            18.6.4  Minimizing Vector Theorem   minvecolem1 26893
      18.7  Complex Hilbert spaces
            18.7.1  Definition and basic properties   chlo 26914
            18.7.2  Standard axioms for a complex Hilbert space   hlex 26927
            18.7.3  Examples of complex Hilbert spaces   cnchl 26945
            18.7.4  Subspaces   ssphl 26946
            18.7.5  Hellinger-Toeplitz Theorem   htthlem 26947
*PART 19  COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
      19.1  Axiomatization of complex pre-Hilbert spaces
            19.1.1  Basic Hilbert space definitions   chil 26949
            19.1.2  Preliminary ZFC lemmas   df-hnorm 26998
            *19.1.3  Derive the Hilbert space axioms from ZFC set theory   axhilex-zf 27011
            *19.1.4  Introduce the vector space axioms for a Hilbert space   ax-hilex 27029
            19.1.5  Vector operations   hvmulex 27041
            19.1.6  Inner product postulates for a Hilbert space   ax-hfi 27109
      19.2  Inner product and norms
            19.2.1  Inner product   his5 27116
            19.2.2  Norms   dfhnorm2 27152
            19.2.3  Relate Hilbert space to normed complex vector spaces   hilablo 27190
            19.2.4  Bunjakovaskij-Cauchy-Schwarz inequality   bcsiALT 27209
      19.3  Cauchy sequences and completeness axiom
            19.3.1  Cauchy sequences and limits   hcau 27214
            19.3.2  Derivation of the completeness axiom from ZF set theory   hilmet 27224
            19.3.3  Completeness postulate for a Hilbert space   ax-hcompl 27232
            19.3.4  Relate Hilbert space to ZFC pre-Hilbert and Hilbert spaces   hhcms 27233
      19.4  Subspaces and projections
            19.4.1  Subspaces   df-sh 27237
            19.4.2  Closed subspaces   df-ch 27251
            19.4.3  Orthocomplements   df-oc 27282
            19.4.4  Subspace sum, span, lattice join, lattice supremum   df-shs 27340
            19.4.5  Projection theorem   pjhthlem1 27423
            19.4.6  Projectors   df-pjh 27427
      19.5  Properties of Hilbert subspaces
            19.5.1  Orthomodular law   omlsilem 27434
            19.5.2  Projectors (cont.)   pjhtheu2 27448
            19.5.3  Hilbert lattice operations   sh0le 27472
            19.5.4  Span (cont.) and one-dimensional subspaces   spansn0 27573
            19.5.5  Commutes relation for Hilbert lattice elements   df-cm 27615
            19.5.6  Foulis-Holland theorem   fh1 27650
            19.5.7  Quantum Logic Explorer axioms   qlax1i 27659
            19.5.8  Orthogonal subspaces   chscllem1 27669
            19.5.9  Orthoarguesian laws 5OA and 3OA   5oalem1 27686
            19.5.10  Projectors (cont.)   pjorthi 27701
            19.5.11  Mayet's equation E_3   mayete3i 27760
      19.6  Operators on Hilbert spaces
            *19.6.1  Operator sum, difference, and scalar multiplication   df-hosum 27762
            19.6.2  Zero and identity operators   df-h0op 27780
            19.6.3  Operations on Hilbert space operators   hoaddcl 27790
            19.6.4  Linear, continuous, bounded, Hermitian, unitary operators and norms   df-nmop 27871
            19.6.5  Linear and continuous functionals and norms   df-nmfn 27877
            19.6.6  Adjoint   df-adjh 27881
            19.6.7  Dirac bra-ket notation   df-bra 27882
            19.6.8  Positive operators   df-leop 27884
            19.6.9  Eigenvectors, eigenvalues, spectrum   df-eigvec 27885
            19.6.10  Theorems about operators and functionals   nmopval 27888
            19.6.11  Riesz lemma   riesz3i 28094
            19.6.12  Adjoints (cont.)   cnlnadjlem1 28099
            19.6.13  Quantum computation error bound theorem   unierri 28136
            19.6.14  Dirac bra-ket notation (cont.)   branmfn 28137
            19.6.15  Positive operators (cont.)   leopg 28154
            19.6.16  Projectors as operators   pjhmopi 28178
      19.7  States on a Hilbert lattice and Godowski's equation
            19.7.1  States on a Hilbert lattice   df-st 28243
            19.7.2  Godowski's equation   golem1 28303
      19.8  Cover relation, atoms, exchange axiom, and modular symmetry
            19.8.1  Covers relation; modular pairs   df-cv 28311
            19.8.2  Atoms   df-at 28370
            19.8.3  Superposition principle   superpos 28386
            19.8.4  Atoms, exchange and covering properties, atomicity   chcv1 28387
            19.8.5  Irreducibility   chirredlem1 28422
            19.8.6  Atoms (cont.)   atcvat3i 28428
            19.8.7  Modular symmetry   mdsymlem1 28435
PART 20  SUPPLEMENTARY MATERIAL (USER'S MATHBOXES)
      20.1  Mathboxes for user contributions
            20.1.1  Mathbox guidelines   mathbox 28474
      20.2  Mathbox for Stefan Allan
      20.3  Mathbox for Thierry Arnoux
            20.3.1  Propositional Calculus - misc additions   bian1d 28479
            20.3.2  Predicate Calculus   spc2ed 28485
                  20.3.2.1  Predicate Calculus - misc additions   spc2ed 28485
                  20.3.2.2  Restricted quantification - misc additions   ralcom4f 28489
                  20.3.2.3  Substitution (without distinct variables) - misc additions   clelsb3f 28493
                  20.3.2.4  Existential "at most one" - misc additions   moel 28496
                  20.3.2.5  Existential uniqueness - misc additions   2reuswap2 28501
                  20.3.2.6  Restricted "at most one" - misc additions   rmoxfrdOLD 28505
            20.3.3  General Set Theory   rabrab 28511
                  20.3.3.1  Class abstractions (a.k.a. class builders)   rabrab 28511
                  20.3.3.2  Image Sets   abrexdomjm 28518
                  20.3.3.3  Set relations and operations - misc additions   eqri 28524
                  20.3.3.4  Unordered pairs   elpreq 28533
                  20.3.3.5  Conditional operator - misc additions   ifeqeqx 28534
                  20.3.3.6  Set union   uniinn0 28538
                  20.3.3.7  Indexed union - misc additions   cbviunf 28544
                  20.3.3.8  Disjointness - misc additions   disjnf 28555
            20.3.4  Relations and Functions   xpdisjres 28582
                  20.3.4.1  Relations - misc additions   xpdisjres 28582
                  20.3.4.2  Functions - misc additions   mptexgf 28598
                  20.3.4.3  Operations - misc additions   mpt2mptxf 28649
                  20.3.4.4  Isomorphisms - misc. add.   gtiso 28650
                  20.3.4.5  Disjointness (additional proof requiring functions)   disjdsct 28652
                  20.3.4.6  First and second members of an ordered pair - misc additions   df1stres 28653
                  20.3.4.7  Supremum - misc additions   supssd 28659
                  20.3.4.8  Finite Sets   imafi2 28661
                  20.3.4.9  Countable Sets   snct 28663
            20.3.5  Real and Complex Numbers   addeq0 28687
                  20.3.5.1  Complex operations - misc. additions   addeq0 28687
                  20.3.5.2  Ordering on reals - misc additions   lt2addrd 28692
                  20.3.5.3  Extended reals - misc additions   xgepnf 28693
                  20.3.5.4  Real number intervals - misc additions   joiniooico 28722
                  20.3.5.5  Finite intervals of integers - misc additions   nndiffz1 28732
                  20.3.5.6  Half-open integer ranges - misc additions   iundisjfi 28738
                  20.3.5.7  The ` # ` (set size) function - misc additions   hashunif 28745
                  20.3.5.8  The greatest common divisor operator - misc. add   numdenneg 28746
                  20.3.5.9  Integers   nnindf 28748
                  20.3.5.10  Division in the extended real number system   cxdiv 28752
            20.3.6  Prime Number Theory   bhmafibid1 28771
                  20.3.6.1  Fermat's two square theorem   bhmafibid1 28771
            20.3.7  Extensible Structures   ressplusf 28777
                  20.3.7.1  Structure restriction operator   ressplusf 28777
                  20.3.7.2  The opposite group   oppgle 28780
                  20.3.7.3  Posets   ressprs 28782
                  20.3.7.4  Complete lattices   clatp0cl 28799
                  20.3.7.5  Extended reals Structure - misc additions   ax-xrssca 28801
                  20.3.7.6  The extended nonnegative real numbers commutative monoid   xrge0base 28813
            20.3.8  Algebra   abliso 28824
                  20.3.8.1  Monoids Homomorphisms   abliso 28824
                  20.3.8.2  Ordered monoids and groups   comnd 28825
                  20.3.8.3  Signum in an ordered monoid   csgns 28853
                  20.3.8.4  The Archimedean property for generic ordered algebraic structures   cinftm 28858
                  20.3.8.5  Semiring left modules   cslmd 28881
                  20.3.8.6  Finitely supported group sums - misc additions   gsumle 28907
                  20.3.8.7  Rings - misc additions   rngurd 28916
                  20.3.8.8  Ordered rings and fields   corng 28923
                  20.3.8.9  Ring homomorphisms - misc additions   rhmdvdsr 28946
                  20.3.8.10  Scalar restriction operation   cresv 28952
                  20.3.8.11  The commutative ring of gaussian integers   gzcrng 28967
                  20.3.8.12  The archimedean ordered field of real numbers   reofld 28968
            20.3.9  Matrices   symgfcoeu 28973
                  20.3.9.1  The symmetric group   symgfcoeu 28973
                  20.3.9.2  Permutation Signs   psgndmfi 28974
                  20.3.9.3  Submatrices   csmat 28984
                  20.3.9.4  Matrix literals   clmat 29002
                  20.3.9.5  Laplace expansion of determinants   mdetpmtr1 29014
            20.3.10  Topology   fvproj 29024
                  20.3.10.1  Open maps   fvproj 29024
                  20.3.10.2  Topology of the unit circle   qtopt1 29027
                  20.3.10.3  Refinements   reff 29031
                  20.3.10.4  Open cover refinement property   ccref 29034
                  20.3.10.5  Lindelöf spaces   cldlf 29044
                  20.3.10.6  Paracompact spaces   cpcmp 29047
                  20.3.10.7  Pseudometrics   cmetid 29054
                  20.3.10.8  Continuity - misc additions   hauseqcn 29066
                  20.3.10.9  Topology of the closed unit   unitsscn 29067
                  20.3.10.10  Topology of ` ( RR X. RR ) `   unicls 29074
                  20.3.10.11  Order topology - misc. additions   cnvordtrestixx 29084
                  20.3.10.12  Continuity in topological spaces - misc. additions   mndpluscn 29097
                  20.3.10.13  Topology of the extended nonnegative real numbers ordered monoid   xrge0hmph 29103
                  20.3.10.14  Limits - misc additions   lmlim 29118
                  20.3.10.15  Univariate polynomials   pl1cn 29126
            20.3.11  Uniform Stuctures and Spaces   chcmp 29127
                  20.3.11.1  Hausdorff uniform completion   chcmp 29127
            20.3.12  Topology and algebraic structures   zringnm 29129
                  20.3.12.1  The norm on the ring of the integer numbers   zringnm 29129
                  20.3.12.2  Topological ` ZZ ` -modules   zlm0 29131
                  20.3.12.3  Canonical embedding of the field of the rational numbers into a division ring   cqqh 29141
                  20.3.12.4  Canonical embedding of the real numbers into a complete ordered field   crrh 29162
                  20.3.12.5  Embedding from the extended real numbers into a complete lattice   cxrh 29185
                  20.3.12.6  Canonical embeddings into the ordered field of the real numbers   zrhre 29188
                  *20.3.12.7  Topological Manifolds   cmntop 29191
            20.3.13  Real and complex functions   nexple 29196
                  20.3.13.1  Integer powers - misc. additions   nexple 29196
                  20.3.13.2  Indicator Functions   cind 29197
                  20.3.13.3  Extended sum   cesum 29213
            20.3.14  Mixed Function/Constant operation   cofc 29281
            20.3.15  Abstract measure   csiga 29294
                  20.3.15.1  Sigma-Algebra   csiga 29294
                  20.3.15.2  Generated sigma-Algebra   csigagen 29325
                  *20.3.15.3  lambda and pi-Systems, Rings of Sets   ispisys 29339
                  20.3.15.4  The Borel algebra on the real numbers   cbrsiga 29368
                  20.3.15.5  Product Sigma-Algebra   csx 29375
                  20.3.15.6  Measures   cmeas 29382
                  20.3.15.7  The counting measure   cntmeas 29413
                  20.3.15.8  The Lebesgue measure - misc additions   voliune 29416
                  20.3.15.9  The Dirac delta measure   cdde 29419
                  20.3.15.10  The 'almost everywhere' relation   cae 29424
                  20.3.15.11  Measurable functions   cmbfm 29436
                  20.3.15.12  Borel Algebra on ` ( RR X. RR ) `   br2base 29455
                  *20.3.15.13  Caratheodory's extension theorem   coms 29477
            20.3.16  Integration   itgeq12dv 29523
                  20.3.16.1  Lebesgue integral - misc additions   itgeq12dv 29523
                  20.3.16.2  Bochner integral   citgm 29524
            20.3.17  Euler's partition theorem   oddpwdc 29551
            20.3.18  Sequences defined by strong recursion   csseq 29580
            20.3.19  Fibonacci Numbers   cfib 29593
            20.3.20  Probability   cprb 29604
                  20.3.20.1  Probability Theory   cprb 29604
                  20.3.20.2  Conditional Probabilities   ccprob 29628
                  20.3.20.3  Real Valued Random Variables   crrv 29637
                  20.3.20.4  Preimage set mapping operator   corvc 29652
                  20.3.20.5  Distribution Functions   orvcelval 29665
                  20.3.20.6  Cumulative Distribution Functions   orvclteel 29669
                  20.3.20.7  Probabilities - example   coinfliplem 29675
                  20.3.20.8  Bertrand's Ballot Problem   ballotlemoex 29682
            20.3.21  Signum (sgn or sign) function - misc. additions   sgncl 29773
            20.3.22  Words over a set - misc additions   wrdres 29789
                  20.3.22.1  Operations on words   ccatmulgnn0dir 29791
            20.3.23  Polynomials with real coefficients - misc additions   plymul02 29795
            20.3.24  Descartes's rule of signs   signspval 29801
                  20.3.24.1  Sign changes in a word over real numbers   signspval 29801
                  20.3.24.2  Counting sign changes in a word over real numbers   signslema 29811
            20.3.25  Elementary Geometry   cstrkg2d 29841
                  *20.3.25.1  Two-dimension geometry   cstrkg2d 29841
                  20.3.25.2  Outer Five Segment (not used, no need to move to main)   cafs 29846
      *20.4  Mathbox for Jonathan Ben-Naim
            20.4.1  First-order logic and set theory   bnj170 29863
            20.4.2  Well founded induction and recursion   bnj110 30028
            20.4.3  The existence of a minimal element in certain classes   bnj69 30178
            20.4.4  Well-founded induction   bnj1204 30180
            20.4.5  Well-founded recursion, part 1 of 3   bnj60 30230
            20.4.6  Well-founded recursion, part 2 of 3   bnj1500 30236
            20.4.7  Well-founded recursion, part 3 of 3   bnj1522 30240
      20.5  Mathbox for Mario Carneiro
            20.5.1  Predicate calculus with all distinct variables   ax-7d 30241
            20.5.2  Miscellaneous stuff   quartfull 30247
            20.5.3  Derangements and the Subfactorial   deranglem 30248
            20.5.4  The Erdős-Szekeres theorem   erdszelem1 30273
            20.5.5  The Kuratowski closure-complement theorem   kur14lem1 30288
            20.5.6  Retracts and sections   cretr 30299
            20.5.7  Path-connected and simply connected spaces   cpcon 30301
            20.5.8  Covering maps   ccvm 30337
            20.5.9  Normal numbers   snmlff 30411
            20.5.10  Godel-sets of formulas   cgoe 30415
            20.5.11  Models of ZF   cgze 30443
            *20.5.12  Metamath formal systems   cmcn 30457
            20.5.13  Grammatical formal systems   cm0s 30582
            20.5.14  Models of formal systems   cmuv 30600
            20.5.15  Splitting fields   citr 30622
            20.5.16  p-adic number fields   czr 30638
      *20.6  Mathbox for Filip Cernatescu
      20.7  Mathbox for Paul Chapman
            20.7.1  Real and complex numbers (cont.)   climuzcnv 30663
            20.7.2  Miscellaneous theorems   elfzm12 30667
      20.8  Mathbox for Scott Fenton
            20.8.1  ZFC Axioms in primitive form   axextprim 30676
            20.8.2  Untangled classes   untelirr 30683
            20.8.3  Extra propositional calculus theorems   3orel1 30690
            20.8.4  Misc. Useful Theorems   nepss 30698
            20.8.5  Properties of real and complex numbers   sqdivzi 30707
            20.8.6  Infinite products   iprodefisumlem 30722
            20.8.7  Factorial limits   faclimlem1 30725
            20.8.8  Greatest common divisor and divisibility   pdivsq 30731
            20.8.9  Properties of relationships   brtp 30735
            20.8.10  Properties of functions and mappings   funpsstri 30752
            20.8.11  Epsilon induction   setinds 30770
            20.8.12  Ordinal numbers   elpotr 30773
            20.8.13  Defined equality axioms   axextdfeq 30790
            20.8.14  Hypothesis builders   hbntg 30798
            20.8.15  (Trans)finite Recursion Theorems   tfisg 30803
            20.8.16  Transitive closure under a relationship   ctrpred 30804
            20.8.17  Founded Induction   frmin 30826
            20.8.18  Ordering Ordinal Sequences   orderseqlem 30836
            20.8.19  Well-founded zero, successor, and limits   cwsuc 30839
            20.8.20  Founded Recursion   frr3g 30859
            20.8.21  Surreal Numbers   csur 30873
            20.8.22  Surreal Numbers: Ordering   sltsolem1 30903
            20.8.23  Surreal Numbers: Birthday Function   bdayfo 30910
            20.8.24  Surreal Numbers: Density   fvnobday 30917
            20.8.25  Surreal Numbers: Upper and Lower Bounds   nobndlem1 30927
            20.8.26  Surreal Numbers: Full-Eta Property   nofulllem1 30937
            20.8.27  Quantifier-free definitions   ctxp 30942
            20.8.28  Alternate ordered pairs   caltop 31069
            20.8.29  Geometry in the Euclidean space   cofs 31095
                  20.8.29.1  Congruence properties   cofs 31095
                  20.8.29.2  Betweenness properties   btwntriv2 31125
                  20.8.29.3  Segment Transportation   ctransport 31142
                  20.8.29.4  Properties relating betweenness and congruence   cifs 31148
                  20.8.29.5  Connectivity of betweenness   btwnconn1lem1 31200
                  20.8.29.6  Segment less than or equal to   csegle 31219
                  20.8.29.7  Outside of relationship   coutsideof 31232
                  20.8.29.8  Lines and Rays   cline2 31247
            20.8.30  Forward difference   cfwddif 31271
            20.8.31  Rank theorems   rankung 31279
            20.8.32  Hereditarily Finite Sets   chf 31285
      20.9  Mathbox for Jeff Hankins
            20.9.1  Miscellany   a1i14 31300
            20.9.2  Basic topological facts   topbnd 31324
            20.9.3  Topology of the real numbers   ivthALT 31335
            20.9.4  Refinements   cfne 31336
            20.9.5  Neighborhood bases determine topologies   neibastop1 31359
            20.9.6  Lattice structure of topologies   topmtcl 31363
            20.9.7  Filter bases   fgmin 31370
            20.9.8  Directed sets, nets   tailfval 31372
      20.10  Mathbox for Anthony Hart
            20.10.1  Propositional Calculus   tb-ax1 31383
            20.10.2  Predicate Calculus   allt 31405
            20.10.3  Misc. Single Axiom Systems   meran1 31415
            20.10.4  Connective Symmetry   negsym1 31421
      20.11  Mathbox for Chen-Pang He
            20.11.1  Ordinal topology   ontopbas 31432
      20.12  Mathbox for Jeff Hoffman
            20.12.1  Inferences for finite induction on generic function values   fveleq 31455
            20.12.2  gdc.mm   nnssi2 31459
      20.13  Mathbox for Asger C. Ipsen
            20.13.1  Continuous nowhere differentiable functions   dnival 31466
      *20.14  Mathbox for BJ
            *20.14.1  Propositional calculus   bj-mp2c 31536
                  *20.14.1.1  Derived rules of inference   bj-mp2c 31536
                  *20.14.1.2  A syntactic theorem   bj-0 31538
                  20.14.1.3  Minimal implicational calculus   bj-a1k 31540
                  20.14.1.4  Positive calculus   bj-orim2 31546
                  20.14.1.5  Implication and negation   pm4.81ALT 31551
                  *20.14.1.6  Disjunction   bj-jaoi1 31561
                  *20.14.1.7  Logical equivalence   bj-dfbi4 31563
                  20.14.1.8  The conditional operator for propositions   bj-consensus 31567
                  *20.14.1.9  Propositional calculus: miscellaneous   sylancl2 31572
            *20.14.2  Modal logic   bj-axdd2 31584
            *20.14.3  Provability logic   cprvb 31590
            *20.14.4  First-order logic   wnff 31599
                  20.14.4.1  Universal and existential quantifiers, "non-free" predicate   wnff 31599
                  20.14.4.2  Adding ax-gen   bj-nfth 31607
                  20.14.4.3  Adding ax-4   bj-genan 31613
                  20.14.4.4  Adding ax-5   bj-ax5ea 31640
                  20.14.4.5  Equality and substitution   wssb 31643
                  20.14.4.6  Adding ax-6   bj-extru 31678
                  20.14.4.7  Adding ax-7   bj-cbvexw 31686
                  20.14.4.8  Membership predicate, ax-8 and ax-9   bj-elequ2g 31688
                  20.14.4.9  Adding ax-11   bj-alcomexcom 31692
                  20.14.4.10  Adding ax-12   axc11n11 31694
                  20.14.4.11  Adding ax-13   bj-axc10 31729
                  *20.14.4.12  Removing dependencies on ax-13 (and ax-11)   bj-axc10v 31739
                  *20.14.4.13  Strengthenings of theorems of the main part   bj-sb3b 31834
                  *20.14.4.14  Distinct var metavariables   bj-hbaeb2 31835
                  *20.14.4.15  Around ~ equsal   bj-equsal1t 31839
                  *20.14.4.16  Some Principia Mathematica proofs   stdpc5t 31844
                  20.14.4.17  Alternate definition of substitution   bj-sbsb 31854
                  20.14.4.18  Lemmas for substitution   bj-sbf3 31856
                  20.14.4.19  Existential uniqueness   bj-eu3f 31859
                  *20.14.4.20  First-logic: miscellaneous   bj-nfdiOLD 31861
            20.14.5  Set theory   eliminable1 31865
                  *20.14.5.1  Eliminability of class terms   eliminable1 31865
                  *20.14.5.2  Classes without extensionality   bj-eleq1w 31872
                  *20.14.5.3  The class-form not-free predicate   bj-nfcsym 31911
                  *20.14.5.4  Proposal for the definitions of class membership and class equality   bj-ax8 31912
                  *20.14.5.5  Lemmas for class substitution   bj-sbeqALT 31919
                  20.14.5.6  Removing some dv conditions   bj-exlimmpi 31929
                  *20.14.5.7  Class abstractions   bj-unrab 31946
                  *20.14.5.8  Restricted non-freeness   wrnf 31954
                  *20.14.5.9  Russell's paradox   bj-ru0 31956
                  *20.14.5.10  Some disjointness results   bj-n0i 31959
                  *20.14.5.11  Complements on direct products   bj-xpimasn 31967
                  *20.14.5.12  "Singletonization" and tagging   bj-sels 31975
                  *20.14.5.13  Tuples of classes   bj-cproj 32003
                  *20.14.5.14  Set theory: miscellaneous   bj-vjust2 32038
                  *20.14.5.15  Elementwise intersection (families of sets induced on a subset)   bj-rest00 32047
                  20.14.5.16  Topology (complements)   bj-toptopon2 32066
                  20.14.5.17  Maps-to notation for functions with three arguments   bj-0nelmpt 32082
                  *20.14.5.18  Currying   cfset 32088
            *20.14.6  Extended real and complex numbers, real and complex projectives lines   bj-elid 32094
                  *20.14.6.1  Diagonal in a Cartesian square   bj-elid 32094
                  *20.14.6.2  Extended numbers and projective lines as sets   cinftyexpi 32102
                  *20.14.6.3  Addition and opposite   caddcc 32133
                  *20.14.6.4  Argument, multiplication and inverse   cprcpal 32137
            *20.14.7  Monoids   bj-cmnssmnd 32145
                  *20.14.7.1  Finite sums in monoids   cfinsum 32154
            *20.14.8  Affine, Euclidean, and Cartesian geometry   crrvec 32157
                  *20.14.8.1  Convex hull in real vector spaces   crrvec 32157
                  *20.14.8.2  Complex numbers (supplements)   bj-subcom 32163
                  *20.14.8.3  Barycentric coordinates   bj-bary1lem 32169
      20.15  Mathbox for Jim Kingdon
      20.16  Mathbox for ML
      20.17  Mathbox for Wolf Lammen
            20.17.1  1. Bootstrapping   wl-section-boot 32252
            20.17.2  Implication chains   wl-section-impchain 32276
            20.17.3  An alternative definition of df-nf   wl-section-nf 32294
            20.17.4  An alternative axiom ~ ax-13   ax-wl-13v 32339
            20.17.5  Other stuff   wl-jarri 32341
      20.18  Mathbox for Brendan Leahy
      20.19  Mathbox for Jeff Madsen
            20.19.1  Logic and set theory   anim12da 32551
            20.19.2  Real and complex numbers; integers   filbcmb 32580
            20.19.3  Sequences and sums   sdclem2 32583
            20.19.4  Topology   subspopn 32593
            20.19.5  Metric spaces   metf1o 32596
            20.19.6  Continuous maps and homeomorphisms   constcncf 32603
            20.19.7  Boundedness   ctotbnd 32610
            20.19.8  Isometries   cismty 32642
            20.19.9  Heine-Borel Theorem   heibor1lem 32653
            20.19.10  Banach Fixed Point Theorem   bfplem1 32666
            20.19.11  Euclidean space   crrn 32669
            20.19.12  Intervals (continued)   ismrer1 32682
            20.19.13  Operation properties   cass 32686
            20.19.14  Groups and related structures   cmagm 32692
            20.19.15  Group homomorphism and isomorphism   cghomOLD 32727
            20.19.16  Rings   crngo 32738
            20.19.17  Division Rings   cdrng 32792
            20.19.18  Ring homomorphisms   crnghom 32804
            20.19.19  Commutative rings   ccm2 32833
            20.19.20  Ideals   cidl 32851
            20.19.21  Prime rings and integral domains   cprrng 32890
            20.19.22  Ideal generators   cigen 32903
      20.20  Mathbox for Giovanni Mascellani
            *20.20.1  Tools for automatic proof building   efald2 32922
            *20.20.2  Tseitin axioms   fald 32981
            *20.20.3  Equality deductions   iuneq2f 33008
            *20.20.4  Miscellanea   scottexf 33021
      20.21  Mathbox for Rodolfo Medina
            20.21.1  Partitions   prtlem60 33027
      *20.22  Mathbox for Norm Megill
            *20.22.1  Obsolete schemes ax-c4,c5,c7,c10,c11,c11n,c15,c9,c14,c16   ax-c5 33061
            *20.22.2  Rederive new axioms ax-4, ax-10, ax-6, ax-12, ax-13 from old   axc5 33071
            *20.22.3  Legacy theorems using obsolete axioms   ax5ALT 33085
            20.22.4  Experiments with weak deduction theorem   elimhyps 33140
            20.22.5  Miscellanea   cnaddcom 33152
            20.22.6  Atoms, hyperplanes, and covering in a left vector space (or module)   clsa 33154
            20.22.7  Functionals and kernels of a left vector space (or module)   clfn 33237
            20.22.8  Opposite rings and dual vector spaces   cld 33303
            20.22.9  Ortholattices and orthomodular lattices   cops 33352
            20.22.10  Atomic lattices with covering property   ccvr 33442
            20.22.11  Hilbert lattices   chlt 33530
            20.22.12  Projective geometries based on Hilbert lattices   clln 33670
            20.22.13  Construction of a vector space from a Hilbert lattice   cdlema1N 33970
            20.22.14  Construction of involution and inner product from a Hilbert lattice   clpoN 35662
      20.23  Mathbox for OpenAI
      20.24  Mathbox for Stefan O'Rear
            20.24.1  Additional elementary logic and set theory   moxfr 36148
            20.24.2  Additional theory of functions   imaiinfv 36149
            20.24.3  Additional topology   elrfi 36150
            20.24.4  Characterization of closure operators. Kuratowski closure axioms   ismrcd1 36154
            20.24.5  Algebraic closure systems   cnacs 36158
            20.24.6  Miscellanea 1. Map utilities   constmap 36169
            20.24.7  Miscellanea for polynomials   mptfcl 36176
            20.24.8  Multivariate polynomials over the integers   cmzpcl 36177
            20.24.9  Miscellanea for Diophantine sets 1   coeq0i 36209
            20.24.10  Diophantine sets 1: definitions   cdioph 36211
            20.24.11  Diophantine sets 2 miscellanea   ellz1 36223
            20.24.12  Diophantine sets 2: union and intersection. Monotone Boolean algebra   diophin 36229
            20.24.13  Diophantine sets 3: construction   diophrex 36232
            20.24.14  Diophantine sets 4 miscellanea   2sbcrex 36241
            20.24.15  Diophantine sets 4: Quantification   rexrabdioph 36251
            20.24.16  Diophantine sets 5: Arithmetic sets   rabdiophlem1 36258
            20.24.17  Diophantine sets 6: reusability. renumbering of variables   eldioph4b 36268
            20.24.18  Pigeonhole Principle and cardinality helpers   fphpd 36273
            20.24.19  A non-closed set of reals is infinite   rencldnfilem 36277
            20.24.20  Lagrange's rational approximation theorem   irrapxlem1 36279
            20.24.21  Pell equations 1: A nontrivial solution always exists   pellexlem1 36286
            20.24.22  Pell equations 2: Algebraic number theory of the solution set   csquarenn 36293
            20.24.23  Pell equations 3: characterizing fundamental solution   infmrgelbi 36335
            *20.24.24  Logarithm laws generalized to an arbitrary base   reglogcl 36347
            20.24.25  Pell equations 4: the positive solution group is infinite cyclic   pellfund14 36355
            20.24.26  X and Y sequences 1: Definition and recurrence laws   crmx 36357
            20.24.27  Ordering and induction lemmas for the integers   monotuz 36399
            20.24.28  X and Y sequences 2: Order properties   rmxypos 36407
            20.24.29  Congruential equations   congtr 36425
            20.24.30  Alternating congruential equations   acongid 36435
            20.24.31  Additional theorems on integer divisibility   coprmdvdsb 36445
            20.24.32  X and Y sequences 3: Divisibility properties   jm2.18 36448
            20.24.33  X and Y sequences 4: Diophantine representability of Y   jm2.27a 36465
            20.24.34  X and Y sequences 5: Diophantine representability of X, ^, _C   rmxdiophlem 36475
            20.24.35  Uncategorized stuff not associated with a major project   setindtr 36484
            20.24.36  More equivalents of the Axiom of Choice   axac10 36493
            20.24.37  Finitely generated left modules   clfig 36530
            20.24.38  Noetherian left modules I   clnm 36538
            20.24.39  Addenda for structure powers   pwssplit4 36552
            20.24.40  Every set admits a group structure iff choice   unxpwdom3 36558
            20.24.41  Noetherian rings and left modules II   clnr 36573
            20.24.42  Hilbert's Basis Theorem   cldgis 36585
            20.24.43  Additional material on polynomials [DEPRECATED]   cmnc 36595
            20.24.44  Degree and minimal polynomial of algebraic numbers   cdgraa 36604
            20.24.45  Algebraic integers I   citgo 36628
            20.24.46  Endomorphism algebra   cmend 36646
            20.24.47  Subfields   csdrg 36666
            20.24.48  Cyclic groups and order   idomrootle 36674
            20.24.49  Cyclotomic polynomials   ccytp 36681
            20.24.50  Miscellaneous topology   fgraphopab 36689
      20.25  Mathbox for Jon Pennant
      20.26  Mathbox for Richard Penner
            20.26.1  Short Studies   ifpan123g 36704
                  20.26.1.1  Additional work on conditional logical operator   ifpan123g 36704
                  20.26.1.2  Sophisms   rp-fakeimass 36758
                  *20.26.1.3  Finite Sets   rp-isfinite5 36764
                  20.26.1.4  Infinite Sets   pwelg 36766
                  *20.26.1.5  Finite intersection property   fipjust 36771
                  20.26.1.6  RP ADDTO: Subclasses and subsets   rababg 36780
                  20.26.1.7  RP ADDTO: The intersection of a class   elintabg 36781
                  20.26.1.8  RP ADDTO: Theorems requiring subset and intersection existence   elinintrab 36784
                  20.26.1.9  RP ADDTO: Relations   xpinintabd 36787
                  *20.26.1.10  RP ADDTO: Functions   elmapintab 36803
                  *20.26.1.11  RP ADDTO: Finite induction (for finite ordinals)   cnvcnvintabd 36807
                  20.26.1.12  RP ADDTO: First and second members of an ordered pair   elcnvlem 36808
                  20.26.1.13  RP ADDTO: The reflexive and transitive properties of relations   undmrnresiss 36811
                  20.26.1.14  RP ADDTO: Basic properties of closures   cleq2lem 36815
                  20.26.1.15  RP REPLACE: Definitions and basic properties of transitive closures   trcleq2lemRP 36838
            20.26.2  Additional statements on relations and subclasses   al3im 36839
                  20.26.2.1  Transitive relations (not to be confused with transitive classes).   trrelind 36858
                  20.26.2.2  Reflexive closures   crcl 36865
                  *20.26.2.3  Finite relationship composition.   relexp2 36870
                  20.26.2.4  Transitive closure of a relation   dftrcl3 36913
                  *20.26.2.5  Adapted from Frege   frege77d 36939
            *20.26.3  Propositions from _Begriffsschrift_   dfxor4 36959
                  *20.26.3.1  _Begriffsschrift_ Chapter I   dfxor4 36959
                  *20.26.3.2  _Begriffsschrift_ Notation hints   rp-imass 36967
                  20.26.3.3  _Begriffsschrift_ Chapter II Implication   ax-frege1 36986
                  20.26.3.4  _Begriffsschrift_ Chapter II Implication and Negation   axfrege28 37025
                  *20.26.3.5  _Begriffsschrift_ Chapter II with logical equivalence   axfrege52a 37052
                  20.26.3.6  _Begriffsschrift_ Chapter II with equivalence of sets   axfrege52c 37083
                  20.26.3.7  _Begriffsschrift_ Chapter II with equivalence of classes (where they are sets)   frege53c 37110
                  *20.26.3.8  _Begriffsschrift_ Chapter III Properties hereditary in a sequence   dffrege69 37128
                  *20.26.3.9  _Begriffsschrift_ Chapter III Following in a sequence   dffrege76 37135
                  *20.26.3.10  _Begriffsschrift_ Chapter III Member of sequence   dffrege99 37158
                  *20.26.3.11  _Begriffsschrift_ Chapter III Single-valued procedures   dffrege115 37174
            *20.26.4  Exploring Topology via Seifert And Threlfall   enrelmap 37193
                  *20.26.4.1  Equinumerosity of sets of relations and maps   enrelmap 37193
                  *20.26.4.2  Generic Pseudoclosure Spaces, Pseudointeror Spaces, and Pseudoneighborhoods   sscon34b 37219
                  *20.26.4.3  Generic Neighborhood Spaces   gneispa 37330
            *20.26.5  Exploring Higher Homotopy via Kerodon   k0004lem1 37347
                  *20.26.5.1  Simplicial Sets   k0004lem1 37347
      20.27  Mathbox for Stanislas Polu
            20.27.1  IMO Problems   wwlemuld 37356
                  20.27.1.1  IMO 1972 B2   wwlemuld 37356
            *20.27.2  INT Inequalities Proof Generator   int-addcomd 37380
            *20.27.3  N-Digit Addition Proof Generator   unitadd 37402
            20.27.4  AM-GM (for k = 2,3,4)   gsumws3 37403
      20.28  Mathbox for Steve Rodriguez
            20.28.1  Miscellanea   nanorxor 37408
            20.28.2  Ratio test for infinite series convergence and divergence   dvgrat 37415
            20.28.3  Multiples   reldvds 37418
            20.28.4  Function operations   caofcan 37426
            20.28.5  Calculus   lhe4.4ex1a 37432
            20.28.6  The generalized binomial coefficient operation   cbcc 37439
            20.28.7  Binomial series   uzmptshftfval 37449
      20.29  Mathbox for Andrew Salmon
            20.29.1  Principia Mathematica * 10   pm10.12 37461
            20.29.2  Principia Mathematica * 11   2alanimi 37475
            20.29.3  Predicate Calculus   sbeqal1 37502
            20.29.4  Principia Mathematica * 13 and * 14   pm13.13a 37512
            20.29.5  Set Theory   elnev 37543
            20.29.6  Arithmetic   addcomgi 37563
            20.29.7  Geometry   cplusr 37564
      *20.30  Mathbox for Alan Sare
            20.30.1  Auxiliary theorems for the Virtual Deduction tool   idiALT 37586
            20.30.2  Supplementary unification deductions   bi1imp 37590
            20.30.3  Conventional Metamath proofs, some derived from VD proofs   iidn3 37610
            20.30.4  What is Virtual Deduction?   wvd1 37688
            20.30.5  Virtual Deduction Theorems   df-vd1 37689
            20.30.6  Theorems proved using Virtual Deduction   trsspwALT 37949
            20.30.7  Theorems proved using Virtual Deduction with mmj2 assistance   simplbi2VD 37985
            20.30.8  Virtual Deduction transcriptions of textbook proofs   sb5ALTVD 38053
            20.30.9  Theorems proved using conjunction-form Virtual Deduction   elpwgdedVD 38057
            20.30.10  Theorems with a VD proof in conventional notation derived from a VD proof   suctrALT3 38064
            *20.30.11  Theorems with a proof in conventional notation derived from a VD proof   notnotrALT2 38067
      20.31  Mathbox for Glauco Siliprandi
            20.31.1  Miscellanea   fnvinran 38078
            20.31.2  Functions   unima 38223
            20.31.3  Ordering on real numbers - Real and complex numbers basic operations   sub2times 38311
            20.31.4  Real intervals   gtnelioc 38445
            20.31.5  Finite sums   sumeq2ad 38518
            20.31.6  Finite multiplication of numbers and finite multiplication of functions   fmul01 38533
            20.31.7  Limits   clim1fr1 38554
            20.31.8  Trigonometry   coseq0 38634
            20.31.9  Continuous Functions   mulcncff 38640
            20.31.10  Derivatives   dvsinexp 38685
            20.31.11  Integrals   volioo 38730
            20.31.12  Stone Weierstrass theorem - real version   stoweidlem1 38784
            20.31.13  Wallis' product for π   wallispilem1 38848
            20.31.14  Stirling's approximation formula for ` n ` factorial   stirlinglem1 38857
            20.31.15  Dirichlet kernel   dirkerval 38874
            20.31.16  Fourier Series   fourierdlem1 38891
            20.31.17  e is transcendental   elaa2lem 39018
            20.31.18  n-dimensional Euclidean space   rrxtopn 39071
            20.31.19  Basic measure theory   csalg 39098
                  *20.31.19.1  σ-Algebras   csalg 39098
                  20.31.19.2  Sum of nonnegative extended reals   csumge0 39149
                  *20.31.19.3  Measures   cmea 39236
                  *20.31.19.4  Outer measures and Caratheodory's construction   come 39273
                  *20.31.19.5  Lebesgue measure on n-dimensional Real numbers   covoln 39320
                  *20.31.19.6  Measurable functions   csmblfn 39480
      20.32  Mathbox for Saveliy Skresanov
            20.32.1  Ceva's theorem   sigarval 39582
      20.33  Mathbox for Jarvin Udandy
      20.34  Mathbox for Alexander van der Vekens
            20.34.1  Double restricted existential uniqueness   r19.32 39710
                  20.34.1.1  Restricted quantification (extension)   r19.32 39710
                  20.34.1.2  The empty set (extension)   raaan2 39718
                  20.34.1.3  Restricted uniqueness and "at most one" quantification   rmoimi 39719
                  20.34.1.4  Analogs to Existential uniqueness (double quantification)   2reurex 39724
            *20.34.2  Alternative definitions of function's and operation's values   wdfat 39736
                  20.34.2.1  Restricted quantification (extension)   ralbinrald 39742
                  20.34.2.2  The universal class (extension)   nvelim 39743
                  20.34.2.3  Introduce the Axiom of Power Sets (extension)   alneu 39744
                  20.34.2.4  Relations (extension)   eldmressn 39746
                  20.34.2.5  Functions (extension)   fveqvfvv 39747
                  20.34.2.6  Predicate "defined at"   dfateq12d 39753
                  20.34.2.7  Alternative definition of the value of a function   dfafv2 39756
                  20.34.2.8  Alternative definition of the value of an operation   aoveq123d 39802
            20.34.3  General auxiliary theorems   1t10e1p1e11 39832
                  20.34.3.1  Miscellanea   1t10e1p1e11 39832
                  20.34.3.2  The modulo (remainder) operation (extension)   m1mod0mod1 39844
                  *20.34.3.3  Partitions of real intervals   ciccp 39846
            20.34.4  Number theory (extension)   cfmtno 39872
                  *20.34.4.1  Fermat numbers   cfmtno 39872
                  *20.34.4.2  Mersenne primes   m2prm 39938
                  20.34.4.3  Proth's theorem   modexp2m1d 39962
            *20.34.5  Even and odd numbers   ceven 39970
                  20.34.5.1  Definitions and basic properties   ceven 39970
                  20.34.5.2  Alternate definitions using the "divides" relation   dfeven2 39995
                  20.34.5.3  Alternate definitions using the "modulo" operation   dfeven3 40003
                  20.34.5.4  Alternate definitions using the "gcd" operation   iseven5 40009
                  20.34.5.5  Theorems of part 5 revised   zneoALTV 40013
                  20.34.5.6  Theorems of part 6 revised   odd2np1ALTV 40018
                  20.34.5.7  Theorems of AV's mathbox revised   0evenALTV 40032
                  20.34.5.8  Additional theorems   epoo 40045
                  20.34.5.9  Perfect Number Theorem (revised)   perfectALTVlem1 40059
                  *20.34.5.10  Goldbach's conjectures   cgbe 40062
            20.34.6  Words over a set (extension)   wrdred1 40135
                  20.34.6.1  Truncated words   wrdred1 40135
                  20.34.6.2  Last symbol of a word (extension)   lswn0 40137
                  20.34.6.3  Concatenations with singleton words (extension)   ccatw2s1cl 40138
                  *20.34.6.4  Prefixes of a word   cpfx 40139
            *20.34.7  Auxiliary theorems for graph theory   elnelall 40197
                  20.34.7.1  Negated equality and membership - extension   elnelall 40197
                  20.34.7.2  Subclasses and subsets - extension   clel5 40198
                  20.34.7.3  The empty set - extension   ralnralall 40202
                  20.34.7.4  Unordered and ordered pairs - extension   elpwdifsn 40207
                  20.34.7.5  Indexed union and intersection - extension   iunopeqop 40221
                  20.34.7.6  Ordered-pair class abstractions - extension   opabn1stprc 40223
                  20.34.7.7  Relations - extension   resresdm 40224
                  20.34.7.8  Functions - extension   fvifeq 40227
                  20.34.7.9  Restricted iota - extension   riotaeqimp 40255
                  20.34.7.10  Equinumerosity - extension   resfnfinfin 40256
                  20.34.7.11  Subtraction - extension   cnambpcma 40258
                  20.34.7.12  Ordering on reals (cont.) - extension   leaddsuble 40260
                  20.34.7.13  Nonnegative integers (as a subset of complex numbers) - extension   nn0resubcl 40266
                  20.34.7.14  Upper sets of integers - extension   eluzge0nn0 40267
                  20.34.7.15  Finite intervals of integers - extension   ssfz12 40268
                  20.34.7.16  Half-open integer ranges - extension   subsubelfzo0 40276
                  20.34.7.17  The ` # ` (set size) function - extension   nfile 40286
                  *20.34.7.18  Extended nonnegative integers   cxnn0 40289
                  20.34.7.19  Finite and infinite sums - extension   fsummsndifre 40311
            20.34.8  Graph theory (revised)   cedgf 40315
                  20.34.8.1  The edge function extractor for extensible structures   cedgf 40315
                  *20.34.8.2  Vertices and edges   cvtx 40321
                  20.34.8.3  Undirected hypergraphs   cuhgr 40370
                  20.34.8.4  Undirected pseudographs and multigraphs   cupgr 40398
                  *20.34.8.5  Loop-free graphs   umgrislfupgrlem 40439
                  20.34.8.6  Edges as subsets of vertices of graphs   cedga 40443
                  *20.34.8.7  Undirected simple graphs - basics   cuspgr 40470
                  20.34.8.8  Examples for graphs   usgr0e 40554
                  20.34.8.9  Subgraphs   csubgr 40583
                  20.34.8.10  Undirected simple graphs - finite graphs   cfusgr 40627
                  20.34.8.11  Neighbors, complete graphs and universal vertices   cnbgr 40642
                  *20.34.8.12  Vertex degree   cvtxdg 40773
                  *20.34.8.13  Regular graphs   crgr 40847
                  *20.34.8.14  Walks   cewlks 40887
                  20.34.8.15  Walks for loop-free graphs   lfgrwlkprop 40988
                  20.34.8.16  Trails   ctrls 40991
                  20.34.8.17  Paths   cpths 41011
                  20.34.8.18  Closed walks   cclwlks 41068
                  20.34.8.19  Circuits and cycles   ccrcts 41082
                  *20.34.8.20  Walks as words   cwwlks 41120
                  20.34.8.21  Walks/paths of length 2 (as length 3 strings)   21wlkdlem1 41224
                  20.34.8.22  Walks in regular graphs   rusgrnumwwlkl1 41264
                  *20.34.8.23  Closed walks as words   cclwwlks 41275
                  20.34.8.24  Examples for walks, trails and paths   0ewlk 41374
                  20.34.8.25  Connected graphs   cconngr 41445
                  *20.34.8.26  Eulerian paths   ceupth 41456
                  *20.34.8.27  The Königsberg Bridge problem   konigsbergvtx 41506
                  20.34.8.28  Friendship graphs - basics   cfrgr 41520
                  20.34.8.29  The friendship theorem for small graphs   frgr1v 41533
                  20.34.8.30  Theorems according to Mertzios and Unger   2pthfrgrrn 41544
                  *20.34.8.31  Huneke's Proof of the Friendship Theorem   frgrncvvdeqlem1 41561
            20.34.9  Monoids (extension)   ovn0dmfun 41646
                  20.34.9.1  Auxiliary theorems   ovn0dmfun 41646
                  20.34.9.2  Magmas and Semigroups (extension)   plusfreseq 41654
                  20.34.9.3  Magma homomorphisms and submagmas   cmgmhm 41659
                  20.34.9.4  Examples and counterexamples for magmas, semigroups and monoids (extension)   opmpt2ismgm 41689
            *20.34.10  Magmas and internal binary operations (alternate approach)   ccllaw 41701
                  *20.34.10.1  Laws for internal binary operations   ccllaw 41701
                  *20.34.10.2  Internal binary operations   cintop 41714
                  20.34.10.3  Alternative definitions for Magmas and Semigroups   cmgm2 41733
            20.34.11  Categories (extension)   idfusubc0 41747
                  20.34.11.1  Subcategories (extension)   idfusubc0 41747
            20.34.12  Rings (extension)   lmod0rng 41750
                  20.34.12.1  Nonzero rings (extension)   lmod0rng 41750
                  *20.34.12.2  Non-unital rings ("rngs")   crng 41756
                  20.34.12.3  Rng homomorphisms   crngh 41767
                  20.34.12.4  Ring homomorphisms (extension)   rhmfn 41800
                  20.34.12.5  Ideals as non-unital rings   lidldomn1 41803
                  20.34.12.6  The non-unital ring of even integers   0even 41813
                  20.34.12.7  A constructed not unital ring   plusgndxnmulrndx 41835
                  *20.34.12.8  The category of non-unital rings   crngc 41841
                  *20.34.12.9  The category of (unital) rings   cringc 41887
                  20.34.12.10  Subcategories of the category of rings   srhmsubclem1 41957
            20.34.13  Basic algebraic structures (extension)   xpprsng 41995
                  20.34.13.1  Auxiliary theorems   xpprsng 41995
                  20.34.13.2  The binomial coefficient operation (extension)   bcpascm1 42014
                  20.34.13.3  The ` ZZ `-module ` ZZ X. ZZ `   zlmodzxzlmod 42017
                  20.34.13.4  Ordered group sum operation (extension)   gsumpr 42024
                  20.34.13.5  Symmetric groups (extension)   nn0le2is012 42030
                  20.34.13.6  Divisibility (extension)   invginvrid 42034
                  20.34.13.7  The support of functions (extension)   rmsupp0 42035
                  20.34.13.8  Finitely supported functions (extension)   rmsuppfi 42040
                  20.34.13.9  Left modules (extension)   lmodvsmdi 42049
                  20.34.13.10  Associative algebras (extension)   ascl0 42051
                  20.34.13.11  Univariate polynomials (extension)   ply1vr1smo 42055
                  20.34.13.12  Univariate polynomials (examples)   linply1 42067
            20.34.14  Linear algebra (extension)   cdmatalt 42071
                  *20.34.14.1  The subalgebras of diagonal and scalar matrices (extension)   cdmatalt 42071
                  *20.34.14.2  Linear combinations   clinc 42079
                  *20.34.14.3  Linear independency   clininds 42115
                  20.34.14.4  Simple left modules and the ` ZZ `-module   lmod1lem1 42162
                  20.34.14.5  Differences between (left) modules and (left) vector spaces   lvecpsslmod 42182
            20.34.15  Complexity theory   offval0 42185
                  20.34.15.1  Auxiliary theorems   offval0 42185
                  20.34.15.2  The modulo (remainder) operation (extension)   fldivmod 42199
                  20.34.15.3  Even and odd integers   nn0onn0ex 42204
                  20.34.15.4  The natural logarithm on complex numbers (extension)   logge0b 42215
                  20.34.15.5  Division of functions   cfdiv 42221
                  20.34.15.6  Upper bounds   cbigo 42231
                  20.34.15.7  Logarithm to an arbitrary base (extension)   rege1logbrege0 42242
                  *20.34.15.8  The binary logarithm   fldivexpfllog2 42249
                  20.34.15.9  Binary length   cblen 42253
                  *20.34.15.10  Digits   cdig 42279
                  20.34.15.11  Nonnegative integer as sum of its shifted digits   dignn0flhalflem1 42299
                  20.34.15.12  Algorithms for the multiplication of nonnegative integers   nn0mulfsum 42308
      *20.35  Mathbox for David A. Wheeler
            20.35.1  Natural deduction   19.8ad 42310
            *20.35.2  Greater than, greater than or equal to.   cge-real 42313
            *20.35.3  Hyperbolic trigonometric functions   csinh 42323
            *20.35.4  Reciprocal trigonometric functions (sec, csc, cot)   csec 42334
            *20.35.5  Identities for "if"   ifnmfalse 42356
            *20.35.6  Decimal point   cdp2 42357
            *20.35.7  Logarithms generalized to arbitrary base using ` logb `   logb2aval 42367
            *20.35.8  Logarithm laws generalized to an arbitrary base - log_   clog- 42368
            *20.35.9  Formally define terms such as Reflexivity   wreflexive 42370
            *20.35.10  Algebra helpers   comraddi 42374
            *20.35.11  Algebra helper examples   i2linesi 42386
            *20.35.12  Formal methods "surprises"   alimp-surprise 42388
            *20.35.13  Allsome quantifier   walsi 42394
            *20.35.14  Miscellaneous   5m4e1 42405
            20.35.15  AA theorems   aacllem 42409
      20.36  Mathbox for Kunhao Zheng
            20.36.1  Weighted AM-GM Inequality   amgmwlem 42410

    < Wrap  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42413
  Copyright terms: Public domain < Wrap  Next >