Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alsconv Structured version   Visualization version   GIF version

Theorem alsconv 46534
Description: There is an equivalence between the two "all some" forms. (Contributed by David A. Wheeler, 22-Oct-2018.)
Assertion
Ref Expression
alsconv (∀!𝑥(𝑥𝐴𝜑) ↔ ∀!𝑥𝐴𝜑)

Proof of Theorem alsconv
StepHypRef Expression
1 df-ral 3060 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
21anbi1i 623 . 2 ((∀𝑥𝐴 𝜑 ∧ ∃𝑥 𝑥𝐴) ↔ (∀𝑥(𝑥𝐴𝜑) ∧ ∃𝑥 𝑥𝐴))
3 df-alsc 46533 . 2 (∀!𝑥𝐴𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∃𝑥 𝑥𝐴))
4 df-alsi 46532 . 2 (∀!𝑥(𝑥𝐴𝜑) ↔ (∀𝑥(𝑥𝐴𝜑) ∧ ∃𝑥 𝑥𝐴))
52, 3, 43bitr4ri 303 1 (∀!𝑥(𝑥𝐴𝜑) ↔ ∀!𝑥𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1535  wex 1777  wcel 2101  wral 3059  ∀!walsi 46530  ∀!walsc 46531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-ral 3060  df-alsi 46532  df-alsc 46533
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator