Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > alsconv | Structured version Visualization version GIF version |
Description: There is an equivalence between the two "all some" forms. (Contributed by David A. Wheeler, 22-Oct-2018.) |
Ref | Expression |
---|---|
alsconv | ⊢ (∀!𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀!𝑥 ∈ 𝐴𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3068 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | 1 | anbi1i 623 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 𝑥 ∈ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∃𝑥 𝑥 ∈ 𝐴)) |
3 | df-alsc 46379 | . 2 ⊢ (∀!𝑥 ∈ 𝐴𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 𝑥 ∈ 𝐴)) | |
4 | df-alsi 46378 | . 2 ⊢ (∀!𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∃𝑥 𝑥 ∈ 𝐴)) | |
5 | 2, 3, 4 | 3bitr4ri 303 | 1 ⊢ (∀!𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀!𝑥 ∈ 𝐴𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∃wex 1783 ∈ wcel 2108 ∀wral 3063 ∀!walsi 46376 ∀!walsc 46377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ral 3068 df-alsi 46378 df-alsc 46379 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |