Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mp2d Structured version   Visualization version   GIF version

Theorem bj-mp2d 31495
Description: A double modus ponens inference. (Contributed by BJ, 24-Sep-2019.)
Hypotheses
Ref Expression
bj-mp2d.1 𝜑
bj-mp2d.2 (𝜑𝜓)
bj-mp2d.3 (𝜓 → (𝜑𝜒))
Assertion
Ref Expression
bj-mp2d 𝜒

Proof of Theorem bj-mp2d
StepHypRef Expression
1 bj-mp2d.1 . . 3 𝜑
2 bj-mp2d.2 . . 3 (𝜑𝜓)
31, 2ax-mp 5 . 2 𝜓
4 bj-mp2d.3 . 2 (𝜓 → (𝜑𝜒))
53, 1, 4mp2 9 1 𝜒
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator