MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfifp2 Structured version   Visualization version   GIF version

Theorem dfifp2 1034
Description: Alternate definition of the conditional operator for propositions. The value of if-(𝜑, 𝜓, 𝜒) is "if 𝜑 then 𝜓, and if not 𝜑 then 𝜒." This is the definition used in Section II.24 of [Church] p. 129 (Definition D12 page 132) (see comment of df-ifp 1033). (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
dfifp2 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ (¬ 𝜑𝜒)))

Proof of Theorem dfifp2
StepHypRef Expression
1 df-ifp 1033 . 2 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
2 cases2 1016 . 2 (((𝜑𝜓) ∨ (¬ 𝜑𝜒)) ↔ ((𝜑𝜓) ∧ (¬ 𝜑𝜒)))
31, 2bitri 264 1 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ (¬ 𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  if-wif 1032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033
This theorem is referenced by:  dfifp3  1035  dfifp5  1037  ifpn  1042  ifpimpda  1048  ifpbi2  38128  ifpbi3  38129  ifpbi23  38134  ifpbi1  38139  ifpbi12  38150  ifpbi13  38151  ifpbi123  38152  ifpimimb  38166  ifpororb  38167  ifpbibib  38172  frege54cor0a  38474
  Copyright terms: Public domain W3C validator