MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfifp2 Structured version   Visualization version   GIF version

Theorem dfifp2 1059
Description: Alternate definition of the conditional operator for propositions. The value of if-(𝜑, 𝜓, 𝜒) is "if 𝜑 then 𝜓, and if not 𝜑 then 𝜒". This is the definition used in Section II.24 of [Church] p. 129 (Definition D12 page 132) (see comment of df-ifp 1058). (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
dfifp2 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ (¬ 𝜑𝜒)))

Proof of Theorem dfifp2
StepHypRef Expression
1 df-ifp 1058 . 2 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
2 cases2 1042 . 2 (((𝜑𝜓) ∨ (¬ 𝜑𝜒)) ↔ ((𝜑𝜓) ∧ (¬ 𝜑𝜒)))
31, 2bitri 277 1 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ (¬ 𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  if-wif 1057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058
This theorem is referenced by:  dfifp3  1060  dfifp5  1062  ifpn  1067  ifpimpda  1074  revwlk  32371  wl-ifpdfbi  34749  ifpbi2  39852  ifpbi3  39853  ifpbi23  39858  ifpbi1  39863  ifpbi12  39874  ifpbi13  39875  ifpimimb  39890  ifpororb  39891  ifpbibib  39896  frege54cor0a  40229
  Copyright terms: Public domain W3C validator