Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege53c Structured version   Visualization version   GIF version

Theorem frege53c 38525
Description: Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege53c ([𝐴 / 𝑥]𝜑 → (𝐴 = 𝐵[𝐵 / 𝑥]𝜑))

Proof of Theorem frege53c
StepHypRef Expression
1 ax-frege52c 38499 . 2 (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑[𝐵 / 𝑥]𝜑))
2 ax-frege8 38420 . 2 ((𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑[𝐵 / 𝑥]𝜑)) → ([𝐴 / 𝑥]𝜑 → (𝐴 = 𝐵[𝐵 / 𝑥]𝜑)))
31, 2ax-mp 5 1 ([𝐴 / 𝑥]𝜑 → (𝐴 = 𝐵[𝐵 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  [wsbc 3468
This theorem was proved from axioms:  ax-mp 5  ax-frege8 38420  ax-frege52c 38499
This theorem is referenced by:  frege55lem2c  38528  frege55c  38529  frege56c  38530  frege92  38566
  Copyright terms: Public domain W3C validator