 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  meredith Structured version   Visualization version   GIF version

Theorem meredith 1556
 Description: Carew Meredith's sole axiom for propositional calculus. This amazing formula is thought to be the shortest possible single axiom for propositional calculus with inference rule ax-mp 5, where negation and implication are primitive. Here we prove Meredith's axiom from ax-1 6, ax-2 7, and ax-3 8. Then from it we derive the Lukasiewicz axioms luk-1 1570, luk-2 1571, and luk-3 1572. Using these we finally rederive our axioms as ax1 1581, ax2 1582, and ax3 1583, thus proving the equivalence of all three systems. C. A. Meredith, "Single Axioms for the Systems (C,N), (C,O) and (A,N) of the Two-Valued Propositional Calculus," The Journal of Computing Systems vol. 1 (1953), pp. 155-164. Meredith claimed to be close to a proof that this axiom is the shortest possible, but the proof was apparently never completed. An obscure Irish lecturer, Meredith (1904-1976) became enamored with logic somewhat late in life after attending talks by Lukasiewicz and produced many remarkable results such as this axiom. From his obituary: "He did logic whenever time and opportunity presented themselves, and he did it on whatever materials came to hand: in a pub, his favored pint of porter within reach, he would use the inside of cigarette packs to write proofs for logical colleagues." (Contributed by NM, 14-Dec-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by Wolf Lammen, 28-May-2013.)
Assertion
Ref Expression
meredith (((((𝜑𝜓) → (¬ 𝜒 → ¬ 𝜃)) → 𝜒) → 𝜏) → ((𝜏𝜑) → (𝜃𝜑)))

Proof of Theorem meredith
StepHypRef Expression
1 pm2.21 118 . . . . . . 7 𝜑 → (𝜑𝜓))
2 con4 110 . . . . . . 7 ((¬ 𝜒 → ¬ 𝜃) → (𝜃𝜒))
31, 2imim12i 59 . . . . . 6 (((𝜑𝜓) → (¬ 𝜒 → ¬ 𝜃)) → (¬ 𝜑 → (𝜃𝜒)))
43com13 85 . . . . 5 (𝜃 → (¬ 𝜑 → (((𝜑𝜓) → (¬ 𝜒 → ¬ 𝜃)) → 𝜒)))
54con1d 137 . . . 4 (𝜃 → (¬ (((𝜑𝜓) → (¬ 𝜒 → ¬ 𝜃)) → 𝜒) → 𝜑))
65com12 32 . . 3 (¬ (((𝜑𝜓) → (¬ 𝜒 → ¬ 𝜃)) → 𝜒) → (𝜃𝜑))
76a1d 25 . 2 (¬ (((𝜑𝜓) → (¬ 𝜒 → ¬ 𝜃)) → 𝜒) → ((𝜏𝜑) → (𝜃𝜑)))
8 ax-1 6 . . 3 (𝜏 → (𝜃𝜏))
98imim1d 79 . 2 (𝜏 → ((𝜏𝜑) → (𝜃𝜑)))
107, 9ja 171 1 (((((𝜑𝜓) → (¬ 𝜒 → ¬ 𝜃)) → 𝜒) → 𝜏) → ((𝜏𝜑) → (𝜃𝜑)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem is referenced by:  merlem1  1557  merlem2  1558  merlem3  1559  merlem4  1560  merlem5  1561  merlem7  1563  merlem8  1564  merlem9  1565  merlem10  1566  merlem11  1567  merlem13  1569  luk-1  1570  luk-2  1571  merco1  1628
 Copyright terms: Public domain W3C validator