MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.25 Structured version   Visualization version   GIF version

Theorem pm4.25 537
Description: Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.25 (𝜑 ↔ (𝜑𝜑))

Proof of Theorem pm4.25
StepHypRef Expression
1 oridm 536 . 2 ((𝜑𝜑) ↔ 𝜑)
21bicomi 214 1 (𝜑 ↔ (𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385
This theorem is referenced by:  brbtwn2  25702  ifpid1g  37355  uneqsn  37838
  Copyright terms: Public domain W3C validator