MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.45 Structured version   Visualization version   GIF version

Theorem pm4.45 726
Description: Theorem *4.45 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.45 (𝜑 ↔ (𝜑 ∧ (𝜑𝜓)))

Proof of Theorem pm4.45
StepHypRef Expression
1 orc 399 . 2 (𝜑 → (𝜑𝜓))
21pm4.71i 667 1 (𝜑 ↔ (𝜑 ∧ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 382  wa 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385
This theorem is referenced by:  dn1  1046
  Copyright terms: Public domain W3C validator