Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  re1ax2lem Structured version   Visualization version   GIF version

Theorem re1ax2lem 32507
Description: Lemma for re1ax2 32508. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
re1ax2lem ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))

Proof of Theorem re1ax2lem
StepHypRef Expression
1 tb-ax2 32504 . . . 4 (𝜓 → ((𝜓𝜒) → 𝜓))
2 tb-ax1 32503 . . . 4 (((𝜓𝜒) → 𝜓) → ((𝜓𝜒) → ((𝜓𝜒) → 𝜒)))
31, 2tbsyl 32506 . . 3 (𝜓 → ((𝜓𝜒) → ((𝜓𝜒) → 𝜒)))
4 tb-ax1 32503 . . . 4 (((𝜓𝜒) → ((𝜓𝜒) → 𝜒)) → ((((𝜓𝜒) → 𝜒) → 𝜒) → ((𝜓𝜒) → 𝜒)))
5 tb-ax3 32505 . . . 4 (((((𝜓𝜒) → 𝜒) → 𝜒) → ((𝜓𝜒) → 𝜒)) → ((𝜓𝜒) → 𝜒))
64, 5tbsyl 32506 . . 3 (((𝜓𝜒) → ((𝜓𝜒) → 𝜒)) → ((𝜓𝜒) → 𝜒))
73, 6tbsyl 32506 . 2 (𝜓 → ((𝜓𝜒) → 𝜒))
8 tb-ax1 32503 . 2 ((𝜑 → (𝜓𝜒)) → (((𝜓𝜒) → 𝜒) → (𝜑𝜒)))
9 tb-ax1 32503 . 2 ((𝜓 → ((𝜓𝜒) → 𝜒)) → ((((𝜓𝜒) → 𝜒) → (𝜑𝜒)) → (𝜓 → (𝜑𝜒))))
107, 8, 9mpsyl 68 1 ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  re1ax2  32508
  Copyright terms: Public domain W3C validator