New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  ifan Unicode version

Theorem ifan 3701
 Description: Rewrite a conjunction in an if statement as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ifan

Proof of Theorem ifan
StepHypRef Expression
1 iftrue 3668 . . 3
2 ibar 490 . . . 4
32ifbid 3680 . . 3
41, 3eqtr2d 2386 . 2
5 simpl 443 . . . . 5
65con3i 127 . . . 4
7 iffalse 3669 . . . 4
86, 7syl 15 . . 3
9 iffalse 3669 . . 3
108, 9eqtr4d 2388 . 2
114, 10pm2.61i 156 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wa 358   wceq 1642  cif 3662 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-if 3663 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator