New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  1st2nd2 GIF version

Theorem 1st2nd2 5516
 Description: Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by SF, 20-Oct-2013.)
Assertion
Ref Expression
1st2nd2 (A (B × C) → A = (1stA), (2ndA))

Proof of Theorem 1st2nd2
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 4802 . 2 (A (B × C) ↔ x B y C A = x, y)
2 vex 2862 . . . . . . . 8 x V
3 vex 2862 . . . . . . . 8 y V
42, 3opfv1st 5514 . . . . . . 7 (1stx, y) = x
52, 3opfv2nd 5515 . . . . . . 7 (2ndx, y) = y
64, 5opeq12i 4583 . . . . . 6 (1stx, y), (2ndx, y) = x, y
76eqcomi 2357 . . . . 5 x, y = (1stx, y), (2ndx, y)
8 id 19 . . . . 5 (A = x, yA = x, y)
9 fveq2 5328 . . . . . 6 (A = x, y → (1stA) = (1stx, y))
10 fveq2 5328 . . . . . 6 (A = x, y → (2ndA) = (2ndx, y))
119, 10opeq12d 4586 . . . . 5 (A = x, y(1stA), (2ndA) = (1stx, y), (2ndx, y))
127, 8, 113eqtr4a 2411 . . . 4 (A = x, yA = (1stA), (2ndA))
1312rexlimivw 2734 . . 3 (y C A = x, yA = (1stA), (2ndA))
1413rexlimivw 2734 . 2 (x B y C A = x, yA = (1stA), (2ndA))
151, 14sylbi 187 1 (A (B × C) → A = (1stA), (2ndA))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1642   ∈ wcel 1710  ∃wrex 2615  ⟨cop 4561  1st c1st 4717   × cxp 4770   ‘cfv 4781  2nd c2nd 4783 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-1st 4723  df-co 4726  df-ima 4727  df-id 4767  df-xp 4784  df-cnv 4785  df-rn 4786  df-dm 4787  df-fun 4789  df-fn 4790  df-f 4791  df-fo 4793  df-fv 4795  df-2nd 4797 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator