Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  comm1 GIF version

Theorem comm1 179
 Description: Commutation with 1. Kalmbach 83 p. 20.
Assertion
Ref Expression
comm1 1 C a

Proof of Theorem comm1
StepHypRef Expression
1 df-t 41 . . 3 1 = (aa )
2 ancom 74 . . . . . 6 (1 ∩ a) = (a ∩ 1)
3 an1 106 . . . . . 6 (a ∩ 1) = a
42, 3ax-r2 36 . . . . 5 (1 ∩ a) = a
5 ancom 74 . . . . . 6 (1 ∩ a ) = (a ∩ 1)
6 an1 106 . . . . . 6 (a ∩ 1) = a
75, 6ax-r2 36 . . . . 5 (1 ∩ a ) = a
84, 72or 72 . . . 4 ((1 ∩ a) ∪ (1 ∩ a )) = (aa )
98ax-r1 35 . . 3 (aa ) = ((1 ∩ a) ∪ (1 ∩ a ))
101, 9ax-r2 36 . 2 1 = ((1 ∩ a) ∪ (1 ∩ a ))
1110df-c1 132 1 1 C a
 Colors of variables: term Syntax hints:   C wc 3  ⊥ wn 4   ∪ wo 6   ∩ wa 7  1wt 8 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38 This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-c1 132 This theorem is referenced by:  wcom1  408
 Copyright terms: Public domain W3C validator