Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  lem3.3.3lem2 GIF version

Theorem lem3.3.3lem2 1050
 Description: Lemma for lem3.3.3 1052.
Assertion
Ref Expression
lem3.3.3lem2 (a5 b) ≤ (b1 a)

Proof of Theorem lem3.3.3lem2
StepHypRef Expression
1 lear 161 . . . 4 (ab ) ≤ b
21leror 152 . . 3 ((ab ) ∪ (ab)) ≤ (b ∪ (ab))
3 ax-a2 31 . . 3 ((ab) ∪ (ab )) = ((ab ) ∪ (ab))
4 ancom 74 . . . 4 (ba) = (ab)
54lor 70 . . 3 (b ∪ (ba)) = (b ∪ (ab))
62, 3, 5le3tr1 140 . 2 ((ab) ∪ (ab )) ≤ (b ∪ (ba))
7 df-id5 1047 . 2 (a5 b) = ((ab) ∪ (ab ))
8 df-i1 44 . 2 (b1 a) = (b ∪ (ba))
96, 7, 8le3tr1 140 1 (a5 b) ≤ (b1 a)
 Colors of variables: term Syntax hints:   ≤ wle 2  ⊥ wn 4   ∪ wo 6   ∩ wa 7   →1 wi1 12   ≡5 wid5 22 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38 This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i1 44  df-le1 130  df-le2 131  df-id5 1047 This theorem is referenced by:  lem3.3.3lem3  1051
 Copyright terms: Public domain W3C validator