Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  mccune3 GIF version

Theorem mccune3 248
 Description: E3 - OL theorem proved by EQP
Assertion
Ref Expression
mccune3 ((((ab) ∪ (ab )) ∪ (a ∩ (ab))) ∪ (ab)) = 1

Proof of Theorem mccune3
StepHypRef Expression
1 df-i3 46 . . . . 5 (a3 b) = (((ab) ∪ (ab )) ∪ (a ∩ (ab)))
21ax-r1 35 . . . 4 (((ab) ∪ (ab )) ∪ (a ∩ (ab))) = (a3 b)
32ax-r4 37 . . 3 (((ab) ∪ (ab )) ∪ (a ∩ (ab))) = (a3 b)
43ax-r5 38 . 2 ((((ab) ∪ (ab )) ∪ (a ∩ (ab))) ∪ (ab)) = ((a3 b) ∪ (ab))
5 ska15 244 . 2 ((a3 b) ∪ (ab)) = 1
64, 5ax-r2 36 1 ((((ab) ∪ (ab )) ∪ (a ∩ (ab))) ∪ (ab)) = 1
 Colors of variables: term Syntax hints:   = wb 1  ⊥ wn 4   ∪ wo 6   ∩ wa 7  1wt 8   →3 wi3 14 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38 This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i3 46  df-le1 130  df-le2 131 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator