| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-f | Structured version Visualization version Unicode version | ||
| Description: Define a function
(mapping) with domain and codomain. Definition
6.15(3) of [TakeutiZaring] p. 27.
|
| Ref | Expression |
|---|---|
| df-f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . 3
| |
| 2 | cB |
. . 3
| |
| 3 | cF |
. . 3
| |
| 4 | 1, 2, 3 | wf 6483 |
. 2
|
| 5 | 3, 1 | wfn 6482 |
. . 3
|
| 6 | 3 | crn 5620 |
. . . 4
|
| 7 | 6, 2 | wss 3897 |
. . 3
|
| 8 | 5, 7 | wa 395 |
. 2
|
| 9 | 4, 8 | wb 206 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: feq1 6635 feq2 6636 feq3 6637 nff 6653 sbcfg 6655 ffn 6657 dffn2 6659 frn 6664 dffn3 6669 ffrnb 6671 fss 6673 fcof 6680 funssxp 6685 fdmrn 6688 fun 6691 fnfco 6694 fssres 6695 fcoi2 6704 fint 6708 fin 6709 f0 6710 fconst 6715 f1ssr 6731 fof 6741 dff1o2 6774 dff2 7038 dff3 7039 fmpt 7049 ffnfv 7058 ffvresb 7064 idref 7085 fpr 7093 dff1o6 7215 fliftf 7255 fiun 7881 f1iun 7882 ffoss 7884 1stcof 7957 2ndcof 7958 smores 8278 smores2 8280 iordsmo 8283 sbthlem9 9014 inf3lem6 9529 alephsmo 9999 alephsing 10173 axdc3lem2 10348 smobeth 10483 fpwwe2lem10 10537 gruiun 10696 gruima 10699 nqerf 10827 om2uzf1oi 13866 fclim 15466 invf 17681 funcres2b 17810 funcres2c 17816 hofcllem 18170 hofcl 18171 nfchnd 18523 gsumval2 18600 resmgmhm2b 18627 resmhm2b 18736 frmdss2 18777 gsumval3a 19821 subgdmdprd 19954 srgfcl 20120 lsslindf 21773 indlcim 21783 cnrest2 23207 lmss 23219 conncn 23347 txflf 23927 cnextf 23987 clsnsg 24031 tgpconncomp 24034 psmetxrge0 24234 causs 25231 ellimc2 25811 perfdvf 25837 c1lip2 25936 dvne0 25949 plyeq0 26149 plyreres 26223 aannenlem1 26269 taylf 26301 ulmss 26339 elno2 27599 elno3 27600 scutf 27759 madef 27803 onsiso 28211 mpteleeOLD 28880 ausgrusgrb 29150 ausgrumgri 29152 usgrexmplef 29244 subuhgr 29271 subupgr 29272 subumgr 29273 subusgr 29274 upgrres 29291 umgrres 29292 hhssnv 31251 pjfi 31691 maprnin 32721 cycpmconjslem1 33130 esplyfv1 33597 measdivcstALTV 34245 sitgf 34367 eulerpartlemn 34401 reprinrn 34638 cvmlift2lem9a 35354 satff 35461 icoreresf 37403 poimirlem30 37696 poimirlem31 37697 isbnd3 37830 dihf11lem 41371 ofoafg 43452 ofoaid1 43456 ofoaid2 43457 naddcnff 43460 ntrf 44221 clsf2 44224 gneispace3 44231 gneispacef2 44234 k0004lem1 44245 dvsid 44429 stoweidlem27 46130 stoweidlem29 46132 stoweidlem31 46134 fourierdlem15 46225 mbfresmf 46842 sinnpoly 46996 ffnafv 47276 fcdmvafv2v 47341 iccpartf 47536 slotresfo 49004 |
| Copyright terms: Public domain | W3C validator |