| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-f | Structured version Visualization version GIF version | ||
| Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. 𝐹:𝐴⟶𝐵 can be read as "𝐹 is a function from 𝐴 to 𝐵". For alternate definitions, see dff2 7088, dff3 7089, and dff4 7090. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-f | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cF | . . 3 class 𝐹 | |
| 4 | 1, 2, 3 | wf 6526 | . 2 wff 𝐹:𝐴⟶𝐵 |
| 5 | 3, 1 | wfn 6525 | . . 3 wff 𝐹 Fn 𝐴 |
| 6 | 3 | crn 5655 | . . . 4 class ran 𝐹 |
| 7 | 6, 2 | wss 3926 | . . 3 wff ran 𝐹 ⊆ 𝐵 |
| 8 | 5, 7 | wa 395 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
| 9 | 4, 8 | wb 206 | 1 wff (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: feq1 6685 feq2 6686 feq3 6687 nff 6701 sbcfg 6703 ffn 6705 dffn2 6707 frn 6712 dffn3 6717 ffrnb 6719 fss 6721 fcof 6728 funssxp 6733 fdmrn 6736 fun 6739 fnfco 6742 fssres 6743 fcoi2 6752 fint 6756 fin 6757 f0 6758 fconst 6763 f1ssr 6779 fof 6789 dff1o2 6822 dff2 7088 dff3 7089 fmpt 7099 ffnfv 7108 ffvresb 7114 idref 7135 fpr 7143 dff1o6 7267 fliftf 7307 fiun 7939 f1iun 7940 ffoss 7942 1stcof 8016 2ndcof 8017 smores 8364 smores2 8366 iordsmo 8369 sbthlem9 9103 inf3lem6 9645 alephsmo 10114 alephsing 10288 axdc3lem2 10463 smobeth 10598 fpwwe2lem10 10652 gruiun 10811 gruima 10814 nqerf 10942 om2uzf1oi 13969 fclim 15567 invf 17779 funcres2b 17908 funcres2c 17914 hofcllem 18268 hofcl 18269 gsumval2 18662 resmgmhm2b 18689 resmhm2b 18798 frmdss2 18839 gsumval3a 19882 subgdmdprd 20015 srgfcl 20154 lsslindf 21788 indlcim 21798 cnrest2 23222 lmss 23234 conncn 23362 txflf 23942 cnextf 24002 clsnsg 24046 tgpconncomp 24049 psmetxrge0 24250 causs 25248 ellimc2 25828 perfdvf 25854 c1lip2 25953 dvne0 25966 plyeq0 26166 plyreres 26240 aannenlem1 26286 taylf 26318 ulmss 26356 elno2 27616 elno3 27617 scutf 27774 madef 27812 mptelee 28820 ausgrusgrb 29090 ausgrumgri 29092 usgrexmplef 29184 subuhgr 29211 subupgr 29212 subumgr 29213 subusgr 29214 upgrres 29231 umgrres 29232 hhssnv 31191 pjfi 31631 maprnin 32654 cycpmconjslem1 33111 measdivcstALTV 34202 sitgf 34325 eulerpartlemn 34359 reprinrn 34596 cvmlift2lem9a 35271 satff 35378 icoreresf 37316 poimirlem30 37620 poimirlem31 37621 isbnd3 37754 dihf11lem 41231 ofoafg 43325 ofoaid1 43329 ofoaid2 43330 naddcnff 43333 ntrf 44094 clsf2 44097 gneispace3 44104 gneispacef2 44107 k0004lem1 44118 dvsid 44303 stoweidlem27 46004 stoweidlem29 46006 stoweidlem31 46008 fourierdlem15 46099 mbfresmf 46716 ffnafv 47148 fcdmvafv2v 47213 iccpartf 47393 slotresfo 48821 |
| Copyright terms: Public domain | W3C validator |