Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-f | Structured version Visualization version GIF version |
Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. 𝐹:𝐴⟶𝐵 can be read as "𝐹 is a function from 𝐴 to 𝐵". For alternate definitions, see dff2 6975, dff3 6976, and dff4 6977. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-f | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wf 6429 | . 2 wff 𝐹:𝐴⟶𝐵 |
5 | 3, 1 | wfn 6428 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 5590 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wss 3887 | . . 3 wff ran 𝐹 ⊆ 𝐵 |
8 | 5, 7 | wa 396 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
9 | 4, 8 | wb 205 | 1 wff (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: feq1 6581 feq2 6582 feq3 6583 nff 6596 sbcfg 6598 ffn 6600 dffn2 6602 frn 6607 dffn3 6613 ffrnb 6615 fss 6617 fcof 6623 fcoOLD 6625 funssxp 6629 fdmrn 6632 fun 6636 fnfco 6639 fssres 6640 fcoi2 6649 fint 6653 fin 6654 f0 6655 fconst 6660 f1ssr 6677 fof 6688 dff1o2 6721 dff2 6975 dff3 6976 fmpt 6984 ffnfv 6992 ffvresb 6998 idref 7018 fpr 7026 dff1o6 7147 fliftf 7186 fiun 7785 f1iun 7786 ffoss 7788 1stcof 7861 2ndcof 7862 smores 8183 smores2 8185 iordsmo 8188 sbthlem9 8878 inf3lem6 9391 alephsmo 9858 alephsing 10032 axdc3lem2 10207 smobeth 10342 fpwwe2lem10 10396 gruiun 10555 gruima 10558 nqerf 10686 om2uzf1oi 13673 fclim 15262 invf 17480 funcres2b 17612 funcres2c 17617 hofcllem 17976 hofcl 17977 gsumval2 18370 resmhm2b 18461 frmdss2 18502 gsumval3a 19504 subgdmdprd 19637 srgfcl 19751 lsslindf 21037 indlcim 21047 cnrest2 22437 lmss 22449 conncn 22577 txflf 23157 cnextf 23217 clsnsg 23261 tgpconncomp 23264 psmetxrge0 23466 causs 24462 ellimc2 25041 perfdvf 25067 c1lip2 25162 dvne0 25175 plyeq0 25372 plyreres 25443 aannenlem1 25488 taylf 25520 ulmss 25556 mptelee 27263 ausgrusgrb 27535 ausgrumgri 27537 usgrexmplef 27626 subuhgr 27653 subupgr 27654 subumgr 27655 subusgr 27656 upgrres 27673 umgrres 27674 hhssnv 29626 pjfi 30066 maprnin 31066 cycpmconjslem1 31421 measdivcstALTV 32193 sitgf 32314 eulerpartlemn 32348 reprinrn 32598 cvmlift2lem9a 33265 satff 33372 elno2 33857 elno3 33858 scutf 34006 madef 34040 icoreresf 35523 poimirlem30 35807 poimirlem31 35808 isbnd3 35942 dihf11lem 39280 ntrf 41733 clsf2 41736 gneispace3 41743 gneispacef2 41746 k0004lem1 41757 dvsid 41949 stoweidlem27 43568 stoweidlem29 43570 stoweidlem31 43572 fourierdlem15 43663 mbfresmf 44275 ffnafv 44663 frnvafv2v 44728 iccpartf 44883 resmgmhm2b 45354 |
Copyright terms: Public domain | W3C validator |