| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-f | Structured version Visualization version GIF version | ||
| Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. 𝐹:𝐴⟶𝐵 can be read as "𝐹 is a function from 𝐴 to 𝐵". For alternate definitions, see dff2 7032, dff3 7033, and dff4 7034. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-f | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cF | . . 3 class 𝐹 | |
| 4 | 1, 2, 3 | wf 6477 | . 2 wff 𝐹:𝐴⟶𝐵 |
| 5 | 3, 1 | wfn 6476 | . . 3 wff 𝐹 Fn 𝐴 |
| 6 | 3 | crn 5615 | . . . 4 class ran 𝐹 |
| 7 | 6, 2 | wss 3897 | . . 3 wff ran 𝐹 ⊆ 𝐵 |
| 8 | 5, 7 | wa 395 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
| 9 | 4, 8 | wb 206 | 1 wff (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: feq1 6629 feq2 6630 feq3 6631 nff 6647 sbcfg 6649 ffn 6651 dffn2 6653 frn 6658 dffn3 6663 ffrnb 6665 fss 6667 fcof 6674 funssxp 6679 fdmrn 6682 fun 6685 fnfco 6688 fssres 6689 fcoi2 6698 fint 6702 fin 6703 f0 6704 fconst 6709 f1ssr 6725 fof 6735 dff1o2 6768 dff2 7032 dff3 7033 fmpt 7043 ffnfv 7052 ffvresb 7058 idref 7079 fpr 7087 dff1o6 7209 fliftf 7249 fiun 7875 f1iun 7876 ffoss 7878 1stcof 7951 2ndcof 7952 smores 8272 smores2 8274 iordsmo 8277 sbthlem9 9008 inf3lem6 9523 alephsmo 9993 alephsing 10167 axdc3lem2 10342 smobeth 10477 fpwwe2lem10 10531 gruiun 10690 gruima 10693 nqerf 10821 om2uzf1oi 13860 fclim 15460 invf 17675 funcres2b 17804 funcres2c 17810 hofcllem 18164 hofcl 18165 nfchnd 18517 gsumval2 18594 resmgmhm2b 18621 resmhm2b 18730 frmdss2 18771 gsumval3a 19815 subgdmdprd 19948 srgfcl 20114 lsslindf 21767 indlcim 21777 cnrest2 23201 lmss 23213 conncn 23341 txflf 23921 cnextf 23981 clsnsg 24025 tgpconncomp 24028 psmetxrge0 24228 causs 25225 ellimc2 25805 perfdvf 25831 c1lip2 25930 dvne0 25943 plyeq0 26143 plyreres 26217 aannenlem1 26263 taylf 26295 ulmss 26333 elno2 27593 elno3 27594 scutf 27753 madef 27797 onsiso 28205 mptelee 28873 ausgrusgrb 29143 ausgrumgri 29145 usgrexmplef 29237 subuhgr 29264 subupgr 29265 subumgr 29266 subusgr 29267 upgrres 29284 umgrres 29285 hhssnv 31244 pjfi 31684 maprnin 32714 cycpmconjslem1 33123 esplyfv1 33590 measdivcstALTV 34238 sitgf 34360 eulerpartlemn 34394 reprinrn 34631 cvmlift2lem9a 35347 satff 35454 icoreresf 37394 poimirlem30 37698 poimirlem31 37699 isbnd3 37832 dihf11lem 41313 ofoafg 43395 ofoaid1 43399 ofoaid2 43400 naddcnff 43403 ntrf 44164 clsf2 44167 gneispace3 44174 gneispacef2 44177 k0004lem1 44188 dvsid 44372 stoweidlem27 46073 stoweidlem29 46075 stoweidlem31 46077 fourierdlem15 46168 mbfresmf 46785 sinnpoly 46930 ffnafv 47210 fcdmvafv2v 47275 iccpartf 47470 slotresfo 48938 |
| Copyright terms: Public domain | W3C validator |