| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-f | Structured version Visualization version GIF version | ||
| Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. 𝐹:𝐴⟶𝐵 can be read as "𝐹 is a function from 𝐴 to 𝐵". For alternate definitions, see dff2 7037, dff3 7038, and dff4 7039. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-f | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cF | . . 3 class 𝐹 | |
| 4 | 1, 2, 3 | wf 6482 | . 2 wff 𝐹:𝐴⟶𝐵 |
| 5 | 3, 1 | wfn 6481 | . . 3 wff 𝐹 Fn 𝐴 |
| 6 | 3 | crn 5624 | . . . 4 class ran 𝐹 |
| 7 | 6, 2 | wss 3905 | . . 3 wff ran 𝐹 ⊆ 𝐵 |
| 8 | 5, 7 | wa 395 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
| 9 | 4, 8 | wb 206 | 1 wff (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: feq1 6634 feq2 6635 feq3 6636 nff 6652 sbcfg 6654 ffn 6656 dffn2 6658 frn 6663 dffn3 6668 ffrnb 6670 fss 6672 fcof 6679 funssxp 6684 fdmrn 6687 fun 6690 fnfco 6693 fssres 6694 fcoi2 6703 fint 6707 fin 6708 f0 6709 fconst 6714 f1ssr 6730 fof 6740 dff1o2 6773 dff2 7037 dff3 7038 fmpt 7048 ffnfv 7057 ffvresb 7063 idref 7084 fpr 7092 dff1o6 7216 fliftf 7256 fiun 7885 f1iun 7886 ffoss 7888 1stcof 7961 2ndcof 7962 smores 8282 smores2 8284 iordsmo 8287 sbthlem9 9019 inf3lem6 9548 alephsmo 10015 alephsing 10189 axdc3lem2 10364 smobeth 10499 fpwwe2lem10 10553 gruiun 10712 gruima 10715 nqerf 10843 om2uzf1oi 13878 fclim 15478 invf 17693 funcres2b 17822 funcres2c 17828 hofcllem 18182 hofcl 18183 gsumval2 18578 resmgmhm2b 18605 resmhm2b 18714 frmdss2 18755 gsumval3a 19800 subgdmdprd 19933 srgfcl 20099 lsslindf 21755 indlcim 21765 cnrest2 23189 lmss 23201 conncn 23329 txflf 23909 cnextf 23969 clsnsg 24013 tgpconncomp 24016 psmetxrge0 24217 causs 25214 ellimc2 25794 perfdvf 25820 c1lip2 25919 dvne0 25932 plyeq0 26132 plyreres 26206 aannenlem1 26252 taylf 26284 ulmss 26322 elno2 27582 elno3 27583 scutf 27741 madef 27784 onsiso 28192 mptelee 28858 ausgrusgrb 29128 ausgrumgri 29130 usgrexmplef 29222 subuhgr 29249 subupgr 29250 subumgr 29251 subusgr 29252 upgrres 29269 umgrres 29270 hhssnv 31226 pjfi 31666 maprnin 32687 cycpmconjslem1 33109 measdivcstALTV 34194 sitgf 34317 eulerpartlemn 34351 reprinrn 34588 cvmlift2lem9a 35278 satff 35385 icoreresf 37328 poimirlem30 37632 poimirlem31 37633 isbnd3 37766 dihf11lem 41248 ofoafg 43330 ofoaid1 43334 ofoaid2 43335 naddcnff 43338 ntrf 44099 clsf2 44102 gneispace3 44109 gneispacef2 44112 k0004lem1 44123 dvsid 44307 stoweidlem27 46012 stoweidlem29 46014 stoweidlem31 46016 fourierdlem15 46107 mbfresmf 46724 sinnpoly 46879 ffnafv 47159 fcdmvafv2v 47224 iccpartf 47419 slotresfo 48887 |
| Copyright terms: Public domain | W3C validator |