| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-f | Structured version Visualization version GIF version | ||
| Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. 𝐹:𝐴⟶𝐵 can be read as "𝐹 is a function from 𝐴 to 𝐵". For alternate definitions, see dff2 7071, dff3 7072, and dff4 7073. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-f | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cF | . . 3 class 𝐹 | |
| 4 | 1, 2, 3 | wf 6507 | . 2 wff 𝐹:𝐴⟶𝐵 |
| 5 | 3, 1 | wfn 6506 | . . 3 wff 𝐹 Fn 𝐴 |
| 6 | 3 | crn 5639 | . . . 4 class ran 𝐹 |
| 7 | 6, 2 | wss 3914 | . . 3 wff ran 𝐹 ⊆ 𝐵 |
| 8 | 5, 7 | wa 395 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
| 9 | 4, 8 | wb 206 | 1 wff (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: feq1 6666 feq2 6667 feq3 6668 nff 6684 sbcfg 6686 ffn 6688 dffn2 6690 frn 6695 dffn3 6700 ffrnb 6702 fss 6704 fcof 6711 funssxp 6716 fdmrn 6719 fun 6722 fnfco 6725 fssres 6726 fcoi2 6735 fint 6739 fin 6740 f0 6741 fconst 6746 f1ssr 6762 fof 6772 dff1o2 6805 dff2 7071 dff3 7072 fmpt 7082 ffnfv 7091 ffvresb 7097 idref 7118 fpr 7126 dff1o6 7250 fliftf 7290 fiun 7921 f1iun 7922 ffoss 7924 1stcof 7998 2ndcof 7999 smores 8321 smores2 8323 iordsmo 8326 sbthlem9 9059 inf3lem6 9586 alephsmo 10055 alephsing 10229 axdc3lem2 10404 smobeth 10539 fpwwe2lem10 10593 gruiun 10752 gruima 10755 nqerf 10883 om2uzf1oi 13918 fclim 15519 invf 17730 funcres2b 17859 funcres2c 17865 hofcllem 18219 hofcl 18220 gsumval2 18613 resmgmhm2b 18640 resmhm2b 18749 frmdss2 18790 gsumval3a 19833 subgdmdprd 19966 srgfcl 20105 lsslindf 21739 indlcim 21749 cnrest2 23173 lmss 23185 conncn 23313 txflf 23893 cnextf 23953 clsnsg 23997 tgpconncomp 24000 psmetxrge0 24201 causs 25198 ellimc2 25778 perfdvf 25804 c1lip2 25903 dvne0 25916 plyeq0 26116 plyreres 26190 aannenlem1 26236 taylf 26268 ulmss 26306 elno2 27566 elno3 27567 scutf 27724 madef 27764 onsiso 28169 mptelee 28822 ausgrusgrb 29092 ausgrumgri 29094 usgrexmplef 29186 subuhgr 29213 subupgr 29214 subumgr 29215 subusgr 29216 upgrres 29233 umgrres 29234 hhssnv 31193 pjfi 31633 maprnin 32654 cycpmconjslem1 33111 measdivcstALTV 34215 sitgf 34338 eulerpartlemn 34372 reprinrn 34609 cvmlift2lem9a 35290 satff 35397 icoreresf 37340 poimirlem30 37644 poimirlem31 37645 isbnd3 37778 dihf11lem 41260 ofoafg 43343 ofoaid1 43347 ofoaid2 43348 naddcnff 43351 ntrf 44112 clsf2 44115 gneispace3 44122 gneispacef2 44125 k0004lem1 44136 dvsid 44320 stoweidlem27 46025 stoweidlem29 46027 stoweidlem31 46029 fourierdlem15 46120 mbfresmf 46737 sinnpoly 46892 ffnafv 47172 fcdmvafv2v 47237 iccpartf 47432 slotresfo 48887 |
| Copyright terms: Public domain | W3C validator |