![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-f | Structured version Visualization version GIF version |
Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. 𝐹:𝐴⟶𝐵 can be read as "𝐹 is a function from 𝐴 to 𝐵". For alternate definitions, see dff2 7118, dff3 7119, and dff4 7120. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-f | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wf 6558 | . 2 wff 𝐹:𝐴⟶𝐵 |
5 | 3, 1 | wfn 6557 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 5689 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wss 3962 | . . 3 wff ran 𝐹 ⊆ 𝐵 |
8 | 5, 7 | wa 395 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
9 | 4, 8 | wb 206 | 1 wff (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: feq1 6716 feq2 6717 feq3 6718 nff 6732 sbcfg 6734 ffn 6736 dffn2 6738 frn 6743 dffn3 6748 ffrnb 6750 fss 6752 fcof 6759 funssxp 6764 fdmrn 6767 fun 6770 fnfco 6773 fssres 6774 fcoi2 6783 fint 6787 fin 6788 f0 6789 fconst 6794 f1ssr 6810 fof 6820 dff1o2 6853 dff2 7118 dff3 7119 fmpt 7129 ffnfv 7138 ffvresb 7144 idref 7165 fpr 7173 dff1o6 7294 fliftf 7334 fiun 7965 f1iun 7966 ffoss 7968 1stcof 8042 2ndcof 8043 smores 8390 smores2 8392 iordsmo 8395 sbthlem9 9129 inf3lem6 9670 alephsmo 10139 alephsing 10313 axdc3lem2 10488 smobeth 10623 fpwwe2lem10 10677 gruiun 10836 gruima 10839 nqerf 10967 om2uzf1oi 13990 fclim 15585 invf 17815 funcres2b 17947 funcres2c 17954 hofcllem 18314 hofcl 18315 gsumval2 18711 resmgmhm2b 18738 resmhm2b 18847 frmdss2 18888 gsumval3a 19935 subgdmdprd 20068 srgfcl 20213 lsslindf 21867 indlcim 21877 cnrest2 23309 lmss 23321 conncn 23449 txflf 24029 cnextf 24089 clsnsg 24133 tgpconncomp 24136 psmetxrge0 24338 causs 25345 ellimc2 25926 perfdvf 25952 c1lip2 26051 dvne0 26064 plyeq0 26264 plyreres 26338 aannenlem1 26384 taylf 26416 ulmss 26454 elno2 27713 elno3 27714 scutf 27871 madef 27909 mptelee 28924 ausgrusgrb 29196 ausgrumgri 29198 usgrexmplef 29290 subuhgr 29317 subupgr 29318 subumgr 29319 subusgr 29320 upgrres 29337 umgrres 29338 hhssnv 31292 pjfi 31732 maprnin 32748 cycpmconjslem1 33156 measdivcstALTV 34205 sitgf 34328 eulerpartlemn 34362 reprinrn 34611 cvmlift2lem9a 35287 satff 35394 icoreresf 37334 poimirlem30 37636 poimirlem31 37637 isbnd3 37770 dihf11lem 41248 ofoafg 43343 ofoaid1 43347 ofoaid2 43348 naddcnff 43351 ntrf 44112 clsf2 44115 gneispace3 44122 gneispacef2 44125 k0004lem1 44136 dvsid 44326 stoweidlem27 45982 stoweidlem29 45984 stoweidlem31 45986 fourierdlem15 46077 mbfresmf 46694 ffnafv 47120 fcdmvafv2v 47185 iccpartf 47355 |
Copyright terms: Public domain | W3C validator |