![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-f | Structured version Visualization version GIF version |
Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. 𝐹:𝐴⟶𝐵 can be read as "𝐹 is a function from 𝐴 to 𝐵". For alternate definitions, see dff2 7101, dff3 7102, and dff4 7103. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-f | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wf 6540 | . 2 wff 𝐹:𝐴⟶𝐵 |
5 | 3, 1 | wfn 6539 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 5678 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wss 3949 | . . 3 wff ran 𝐹 ⊆ 𝐵 |
8 | 5, 7 | wa 397 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
9 | 4, 8 | wb 205 | 1 wff (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: feq1 6699 feq2 6700 feq3 6701 nff 6714 sbcfg 6716 ffn 6718 dffn2 6720 frn 6725 dffn3 6731 ffrnb 6733 fss 6735 fcof 6741 fcoOLD 6743 funssxp 6747 fdmrn 6750 fun 6754 fnfco 6757 fssres 6758 fcoi2 6767 fint 6771 fin 6772 f0 6773 fconst 6778 f1ssr 6795 fof 6806 dff1o2 6839 dff2 7101 dff3 7102 fmpt 7110 ffnfv 7118 ffvresb 7124 idref 7144 fpr 7152 dff1o6 7273 fliftf 7312 fiun 7929 f1iun 7930 ffoss 7932 1stcof 8005 2ndcof 8006 smores 8352 smores2 8354 iordsmo 8357 sbthlem9 9091 inf3lem6 9628 alephsmo 10097 alephsing 10271 axdc3lem2 10446 smobeth 10581 fpwwe2lem10 10635 gruiun 10794 gruima 10797 nqerf 10925 om2uzf1oi 13918 fclim 15497 invf 17715 funcres2b 17847 funcres2c 17852 hofcllem 18211 hofcl 18212 gsumval2 18605 resmhm2b 18703 frmdss2 18744 gsumval3a 19771 subgdmdprd 19904 srgfcl 20019 lsslindf 21385 indlcim 21395 cnrest2 22790 lmss 22802 conncn 22930 txflf 23510 cnextf 23570 clsnsg 23614 tgpconncomp 23617 psmetxrge0 23819 causs 24815 ellimc2 25394 perfdvf 25420 c1lip2 25515 dvne0 25528 plyeq0 25725 plyreres 25796 aannenlem1 25841 taylf 25873 ulmss 25909 elno2 27157 elno3 27158 scutf 27313 madef 27351 mptelee 28153 ausgrusgrb 28425 ausgrumgri 28427 usgrexmplef 28516 subuhgr 28543 subupgr 28544 subumgr 28545 subusgr 28546 upgrres 28563 umgrres 28564 hhssnv 30517 pjfi 30957 maprnin 31956 cycpmconjslem1 32313 measdivcstALTV 33223 sitgf 33346 eulerpartlemn 33380 reprinrn 33630 cvmlift2lem9a 34294 satff 34401 icoreresf 36233 poimirlem30 36518 poimirlem31 36519 isbnd3 36652 dihf11lem 40137 ofoafg 42104 ofoaid1 42108 ofoaid2 42109 naddcnff 42112 ntrf 42874 clsf2 42877 gneispace3 42884 gneispacef2 42887 k0004lem1 42898 dvsid 43090 stoweidlem27 44743 stoweidlem29 44745 stoweidlem31 44747 fourierdlem15 44838 mbfresmf 45455 ffnafv 45879 fcdmvafv2v 45944 iccpartf 46099 resmgmhm2b 46570 |
Copyright terms: Public domain | W3C validator |