Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-f | Structured version Visualization version GIF version |
Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. 𝐹:𝐴⟶𝐵 can be read as "𝐹 is a function from 𝐴 to 𝐵". For alternate definitions, see dff2 6954, dff3 6955, and dff4 6956. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-f | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wf 6411 | . 2 wff 𝐹:𝐴⟶𝐵 |
5 | 3, 1 | wfn 6410 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 5580 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wss 3884 | . . 3 wff ran 𝐹 ⊆ 𝐵 |
8 | 5, 7 | wa 399 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
9 | 4, 8 | wb 209 | 1 wff (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: feq1 6562 feq2 6563 feq3 6564 nff 6577 sbcfg 6579 ffn 6581 dffn2 6583 frn 6588 dffn3 6594 ffrnb 6596 fss 6598 fcof 6604 fcoOLD 6606 funssxp 6610 fdmrn 6613 fun 6617 fnfco 6620 fssres 6621 fcoi2 6630 fint 6634 fin 6635 f0 6636 fconst 6641 f1ssr 6658 fof 6669 dff1o2 6702 dff2 6954 dff3 6955 fmpt 6963 ffnfv 6971 ffvresb 6977 idref 6997 fpr 7005 dff1o6 7125 fliftf 7163 fiun 7756 f1iun 7757 ffoss 7759 1stcof 7831 2ndcof 7832 smores 8131 smores2 8133 iordsmo 8136 sbthlem9 8808 inf3lem6 9296 alephsmo 9764 alephsing 9938 axdc3lem2 10113 smobeth 10248 fpwwe2lem10 10302 gruiun 10461 gruima 10464 nqerf 10592 om2uzf1oi 13576 fclim 15165 invf 17372 funcres2b 17503 funcres2c 17508 hofcllem 17867 hofcl 17868 gsumval2 18260 resmhm2b 18351 frmdss2 18392 gsumval3a 19394 subgdmdprd 19527 srgfcl 19641 lsslindf 20922 indlcim 20932 cnrest2 22320 lmss 22332 conncn 22460 txflf 23040 cnextf 23100 clsnsg 23144 tgpconncomp 23147 psmetxrge0 23349 causs 24342 ellimc2 24921 perfdvf 24947 c1lip2 25042 dvne0 25055 plyeq0 25252 plyreres 25323 aannenlem1 25368 taylf 25400 ulmss 25436 mptelee 27141 ausgrusgrb 27413 ausgrumgri 27415 usgrexmplef 27504 subuhgr 27531 subupgr 27532 subumgr 27533 subusgr 27534 upgrres 27551 umgrres 27552 hhssnv 29502 pjfi 29942 maprnin 30943 cycpmconjslem1 31298 measdivcstALTV 32068 sitgf 32189 eulerpartlemn 32223 reprinrn 32473 cvmlift2lem9a 33140 satff 33247 elno2 33759 elno3 33760 scutf 33908 madef 33942 icoreresf 35429 poimirlem30 35713 poimirlem31 35714 isbnd3 35848 dihf11lem 39186 ntrf 41595 clsf2 41598 gneispace3 41605 gneispacef2 41608 k0004lem1 41619 dvsid 41811 stoweidlem27 43431 stoweidlem29 43433 stoweidlem31 43435 fourierdlem15 43526 mbfresmf 44135 ffnafv 44523 frnvafv2v 44588 iccpartf 44744 resmgmhm2b 45215 |
Copyright terms: Public domain | W3C validator |