![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-f | Structured version Visualization version GIF version |
Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. 𝐹:𝐴⟶𝐵 can be read as "𝐹 is a function from 𝐴 to 𝐵". For alternate definitions, see dff2 7133, dff3 7134, and dff4 7135. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-f | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wf 6569 | . 2 wff 𝐹:𝐴⟶𝐵 |
5 | 3, 1 | wfn 6568 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 5701 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wss 3976 | . . 3 wff ran 𝐹 ⊆ 𝐵 |
8 | 5, 7 | wa 395 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
9 | 4, 8 | wb 206 | 1 wff (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: feq1 6728 feq2 6729 feq3 6730 nff 6743 sbcfg 6745 ffn 6747 dffn2 6749 frn 6754 dffn3 6759 ffrnb 6761 fss 6763 fcof 6770 fcoOLD 6772 funssxp 6776 fdmrn 6779 fun 6783 fnfco 6786 fssres 6787 fcoi2 6796 fint 6800 fin 6801 f0 6802 fconst 6807 f1ssr 6823 fof 6834 dff1o2 6867 dff2 7133 dff3 7134 fmpt 7144 ffnfv 7153 ffvresb 7159 idref 7180 fpr 7188 dff1o6 7311 fliftf 7351 fiun 7983 f1iun 7984 ffoss 7986 1stcof 8060 2ndcof 8061 smores 8408 smores2 8410 iordsmo 8413 sbthlem9 9157 inf3lem6 9702 alephsmo 10171 alephsing 10345 axdc3lem2 10520 smobeth 10655 fpwwe2lem10 10709 gruiun 10868 gruima 10871 nqerf 10999 om2uzf1oi 14004 fclim 15599 invf 17829 funcres2b 17961 funcres2c 17968 hofcllem 18328 hofcl 18329 gsumval2 18724 resmgmhm2b 18751 resmhm2b 18857 frmdss2 18898 gsumval3a 19945 subgdmdprd 20078 srgfcl 20223 lsslindf 21873 indlcim 21883 cnrest2 23315 lmss 23327 conncn 23455 txflf 24035 cnextf 24095 clsnsg 24139 tgpconncomp 24142 psmetxrge0 24344 causs 25351 ellimc2 25932 perfdvf 25958 c1lip2 26057 dvne0 26070 plyeq0 26270 plyreres 26342 aannenlem1 26388 taylf 26420 ulmss 26458 elno2 27717 elno3 27718 scutf 27875 madef 27913 mptelee 28928 ausgrusgrb 29200 ausgrumgri 29202 usgrexmplef 29294 subuhgr 29321 subupgr 29322 subumgr 29323 subusgr 29324 upgrres 29341 umgrres 29342 hhssnv 31296 pjfi 31736 maprnin 32745 cycpmconjslem1 33147 measdivcstALTV 34189 sitgf 34312 eulerpartlemn 34346 reprinrn 34595 cvmlift2lem9a 35271 satff 35378 icoreresf 37318 poimirlem30 37610 poimirlem31 37611 isbnd3 37744 dihf11lem 41223 ofoafg 43316 ofoaid1 43320 ofoaid2 43321 naddcnff 43324 ntrf 44085 clsf2 44088 gneispace3 44095 gneispacef2 44098 k0004lem1 44109 dvsid 44300 stoweidlem27 45948 stoweidlem29 45950 stoweidlem31 45952 fourierdlem15 46043 mbfresmf 46660 ffnafv 47086 fcdmvafv2v 47151 iccpartf 47305 |
Copyright terms: Public domain | W3C validator |