| Metamath Proof Explorer |
This is the Unicode version. Change to GIF version |
||
| Symbol | ASCII |
| ( | ( |
| ) | ) |
| → | -> |
| ¬ | -. |
| wff | wff |
| ⊢ | |- |
| & | & |
| ⇒ | => |
| 𝜑 | ph |
| 𝜓 | ps |
| 𝜒 | ch |
| 𝜃 | th |
| 𝜏 | ta |
| 𝜂 | et |
| 𝜁 | ze |
| 𝜎 | si |
| 𝜌 | rh |
| 𝜇 | mu |
| 𝜆 | la |
| 𝜅 | ka |
| ↔ | <-> |
| ∧ | /\ |
| ∨ | \/ |
| , | , |
| if- | if- |
| ⊼ | -/\ |
| ⊻ | \/_ |
| ⊽ | -\/ |
| ∀ | A. |
| setvar | setvar |
| 𝑥 | x |
| class | class |
| = | = |
| 𝐴 | A |
| 𝐵 | B |
| ⊤ | T. |
| 𝑦 | y |
| ⊥ | F. |
| hadd | hadd |
| cadd | cadd |
| 𝑧 | z |
| 𝑤 | w |
| 𝑣 | v |
| 𝑢 | u |
| 𝑡 | t |
| ∃ | E. |
| Ⅎ | F/ |
| 𝑓 | f |
| 𝑔 | g |
| 𝑠 | s |
| [ | [ |
| / | / |
| ] | ] |
| ∈ | e. |
| ∃* | E* |
| ∃! | E! |
| { | { |
| ∣ | | |
| } | } |
| ∧ | ./\ |
| ∨ | .\/ |
| ≤ | .<_ |
| < | .< |
| + | .+ |
| − | .- |
| × | .X. |
| / | ./ |
| ↑ | .^ |
| 0 | .0. |
| 1 | .1. |
| ∥ | .|| |
| ∼ | .~ |
| ⊥ | ._|_ |
| ⨣ | .+^ |
| ✚ | .+b |
| ⊕ | .(+) |
| ∗ | .* |
| · | .x. |
| ∙ | .xb |
| , | ., |
| ⊗ | .(x) |
| ⚬ | .o. |
| 𝟎 | .0b |
| 𝐶 | C |
| 𝐷 | D |
| 𝑃 | P |
| 𝑄 | Q |
| 𝑅 | R |
| 𝑆 | S |
| 𝑇 | T |
| 𝑈 | U |
| 𝑒 | e |
| ℎ | h |
| 𝑖 | i |
| 𝑗 | j |
| 𝑘 | k |
| 𝑚 | m |
| 𝑛 | n |
| 𝑜 | o |
| 𝐸 | E |
| 𝐹 | F |
| 𝐺 | G |
| 𝐻 | H |
| 𝐼 | I |
| 𝐽 | J |
| 𝐾 | K |
| 𝐿 | L |
| 𝑀 | M |
| 𝑁 | N |
| 𝑉 | V |
| 𝑊 | W |
| 𝑋 | X |
| 𝑌 | Y |
| 𝑍 | Z |
| 𝑂 | O |
| 𝑟 | r |
| 𝑞 | q |
| 𝑝 | p |
| 𝑎 | a |
| 𝑏 | b |
| 𝑐 | c |
| 𝑑 | d |
| 𝑙 | l |
| Ⅎ | F/_ |
| ≠ | =/= |
| ∉ | e/ |
| V | _V |
| CondEq | CondEq |
| [ | [. |
| ] | ]. |
| ⦋ | [_ |
| ⦌ | ]_ |
| ∖ | \ |
| ∪ | u. |
| ∩ | i^i |
| ⊆ | C_ |
| ⊊ | C. |
| △ | /_\ |
| ∅ | (/) |
| if | if |
| 𝒫 | ~P |
| 〈 | <. |
| 〉 | >. |
| ∪ | U. |
| ∩ | |^| |
| ∪ | U_ |
| ∩ | |^|_ |
| Disj | Disj_ |
| ↦ | |-> |
| Tr | Tr |
| I | _I |
| E | _E |
| Po | Po |
| Or | Or |
| Fr | Fr |
| Se | Se |
| We | We |
| × | X. |
| ◡ | `' |
| dom | dom |
| ran | ran |
| ↾ | |` |
| “ | " |
| ∘ | o. |
| Rel | Rel |
| Pred | Pred |
| Ord | Ord |
| On | On |
| Lim | Lim |
| suc | suc |
| ℩ | iota |
| : | : |
| Fun | Fun |
| Fn | Fn |
| ⟶ | --> |
| –1-1→ | -1-1-> |
| –onto→ | -onto-> |
| –1-1-onto→ | -1-1-onto-> |
| ‘ | ` |
| Isom | Isom |
| ℩ | iota_ |
| ∘f | oF |
| ∘r | oR |
| [⊊] | [C.] |
| ω | _om |
| 1st | 1st |
| 2nd | 2nd |
| supp | supp |
| tpos | tpos |
| curry | curry |
| uncurry | uncurry |
| Undef | Undef |
| frecs | frecs |
| wrecs | wrecs |
| Smo | Smo |
| recs | recs |
| rec | rec |
| seqω | seqom |
| 1o | 1o |
| 2o | 2o |
| 3o | 3o |
| 4o | 4o |
| +o | +o |
| ·o | .o |
| ↑o | ^o |
| +no | +no |
| Er | Er |
| / | /. |
| ↑m | ^m |
| ↑pm | ^pm |
| X | X_ |
| ≈ | ~~ |
| ≼ | ~<_ |
| ≺ | ~< |
| Fin | Fin |
| finSupp | finSupp |
| fi | fi |
| sup | sup |
| inf | inf |
| OrdIso | OrdIso |
| har | har |
| ≼* | ~<_* |
| CNF | CNF |
| t++ | t++ |
| TC | TC |
| 𝑅1 | R1 |
| rank | rank |
| ⊔ | |_| |
| inl | inl |
| inr | inr |
| card | card |
| ℵ | aleph |
| cf | cf |
| AC | AC_ |
| CHOICE | CHOICE |
| FinIa | Fin1a |
| FinII | Fin2 |
| FinIII | Fin3 |
| FinIV | Fin4 |
| FinV | Fin5 |
| FinVI | Fin6 |
| FinVII | Fin7 |
| GCH | GCH |
| Inaccw | InaccW |
| Inacc | Inacc |
| WUni | WUni |
| wUniCl | wUniCl |
| Tarski | Tarski |
| Univ | Univ |
| tarskiMap | tarskiMap |
| N | N. |
| +N | +N |
| ·N | .N |
| <N | <N |
| +pQ | +pQ |
| ·pQ | .pQ |
| <pQ | <pQ |
| ~Q | ~Q |
| Q | Q. |
| 1Q | 1Q |
| [Q] | /Q |
| +Q | +Q |
| ·Q | .Q |
| *Q | *Q |
| <Q | <Q |
| P | P. |
| 1P | 1P |
| +P | +P. |
| ·P | .P. |
| <P | <P |
| ~R | ~R |
| R | R. |
| 0R | 0R |
| 1R | 1R |
| -1R | -1R |
| +R | +R |
| ·R | .R |
| <R | <R |
| <ℝ | <RR |
| ℂ | CC |
| ℝ | RR |
| 0 | 0 |
| 1 | 1 |
| i | _i |
| + | + |
| · | x. |
| ≤ | <_ |
| +∞ | +oo |
| -∞ | -oo |
| ℝ* | RR* |
| < | < |
| − | - |
| - | -u |
| ℕ | NN |
| 2 | 2 |
| 3 | 3 |
| 4 | 4 |
| 5 | 5 |
| 6 | 6 |
| 7 | 7 |
| 8 | 8 |
| 9 | 9 |
| ℕ0 | NN0 |
| ℕ0* | NN0* |
| ℤ | ZZ |
| ; | ; |
| ℤ≥ | ZZ>= |
| ℚ | |
| ℝ+ | RR+ |
| -𝑒 | -e |
| +𝑒 | +e |
| ·e | *e |
| (,) | (,) |
| (,] | (,] |
| [,) | [,) |
| [,] | [,] |
| ... | ... |
| ..^ | ..^ |
| ⌊ | |_ |
| ⌈ | |^ |
| mod | mod |
| ≡ | == |
| seq | seq |
| ↑ | ^ |
| ! | ! |
| C | _C |
| ♯ | # |
| Word | Word |
| lastS | lastS |
| ++ | ++ |
| 〈“ | <" |
| ”〉 | "> |
| substr | substr |
| prefix | prefix |
| splice | splice |
| reverse | reverse |
| repeatS | repeatS |
| cyclShift | cyclShift |
| t+ | t+ |
| t* | t* |
| ↑𝑟 | ^r |
| t*rec | t*rec |
| shift | shift |
| sgn | sgn |
| ℜ | Re |
| ℑ | Im |
| ∗ | * |
| √ | sqrt |
| abs | abs |
| ± | +- |
| lim sup | limsup |
| ⇝ | ~~> |
| ⇝𝑟 | ~~>r |
| 𝑂(1) | O(1) |
| ≤𝑂(1) | <_O(1) |
| Σ | sum_ |
| ∏ | prod_ |
| FallFac | FallFac |
| RiseFac | RiseFac |
| BernPoly | BernPoly |
| exp | exp |
| e | _e |
| sin | sin |
| cos | cos |
| tan | tan |
| π | _pi |
| τ | _tau |
| ∥ | || |
| bits | bits |
| sadd | sadd |
| smul | smul |
| gcd | gcd |
| lcm | lcm |
| lcm | _lcm |
| ℙ | Prime |
| numer | numer |
| denom | denom |
| odℤ | odZ |
| ϕ | phi |
| pCnt | pCnt |
| ℤ[i] | Z[i] |
| AP | AP |
| MonoAP | MonoAP |
| PolyAP | PolyAP |
| Ramsey | Ramsey |
| #p | #p |
| Struct | Struct |
| sSet | sSet |
| Slot | Slot |
| ndx | ndx |
| Base | Base |
| ↾s | |`s |
| +g | +g |
| .r | .r |
| *𝑟 | *r |
| Scalar | Scalar |
| ·𝑠 | .s |
| ·𝑖 | .i |
| TopSet | TopSet |
| le | le |
| oc | oc |
| dist | dist |
| UnifSet | UnifSet |
| Hom | Hom |
| comp | comp |
| ↾t | |`t |
| TopOpen | TopOpen |
| topGen | topGen |
| ∏t | Xt_ |
| 0g | 0g |
| Σg | gsum |
| Xs | Xs_ |
| ↑s | ^s |
| ordTop | ordTop |
| ℝ*𝑠 | RR*s |
| “s | "s |
| /s | /s |
| qTop | qTop |
| ×s | Xs. |
| Moore | Moore |
| mrCls | mrCls |
| mrInd | mrInd |
| ACS | ACS |
| Cat | Cat |
| Id | Id |
| Homf | Homf |
| compf | comf |
| oppCat | oppCat |
| Mono | Mono |
| Epi | Epi |
| Sect | Sect |
| Inv | Inv |
| Iso | Iso |
| ≃𝑐 | ~=c |
| ⊆cat | C_cat |
| ↾cat | |`cat |
| Subcat | Subcat |
| Func | Func |
| idfunc | idFunc |
| ∘func | o.func |
| ↾f | |`f |
| Full | Full |
| Faith | Faith |
| Nat | Nat |
| FuncCat | FuncCat |
| InitO | InitO |
| TermO | TermO |
| ZeroO | ZeroO |
| doma | domA |
| coda | codA |
| Arrow | Arrow |
| Homa | HomA |
| Ida | IdA |
| compa | compA |
| SetCat | SetCat |
| CatCat | CatCat |
| ExtStrCat | ExtStrCat |
| ×c | Xc. |
| 1stF | 1stF |
| 2ndF | 2ndF |
| 〈,〉F | pairF |
| evalF | evalF |
| curryF | curryF |
| uncurryF | uncurryF |
| Δfunc | DiagFunc |
| HomF | HomF |
| Yon | Yon |
| ODual | ODual |
| Proset | Proset |
| Dirset | Dirset |
| Poset | Poset |
| lt | lt |
| lub | lub |
| glb | glb |
| join | join |
| meet | meet |
| Toset | Toset |
| 1. | 1. |
| 0. | 0. |
| Lat | Lat |
| CLat | CLat |
| DLat | DLat |
| toInc | toInc |
| PosetRel | PosetRel |
| TosetRel | TosetRel |
| DirRel | DirRel |
| tail | tail |
| +𝑓 | +f |
| Mgm | Mgm |
| MgmHom | MgmHom |
| SubMgm | SubMgm |
| Smgrp | Smgrp |
| Mnd | Mnd |
| MndHom | MndHom |
| SubMnd | SubMnd |
| freeMnd | freeMnd |
| varFMnd | varFMnd |
| EndoFMnd | EndoFMnd |
| Grp | Grp |
| invg | invg |
| -g | -g |
| .g | .g |
| ~QG | ~QG |
| SubGrp | SubGrp |
| NrmSGrp | NrmSGrp |
| GrpHom | GrpHom |
| GrpIso | GrpIso |
| ≃𝑔 | ~=g |
| GrpAct | GrpAct |
| Cntr | Cntr |
| Cntz | Cntz |
| oppg | oppG |
| SymGrp | SymGrp |
| pmTrsp | pmTrsp |
| pmSgn | pmSgn |
| pmEven | pmEven |
| od | od |
| gEx | gEx |
| pGrp | pGrp |
| pSyl | pSyl |
| LSSum | LSSum |
| proj1 | proj1 |
| ~FG | ~FG |
| freeGrp | freeGrp |
| varFGrp | varFGrp |
| CMnd | CMnd |
| Abel | Abel |
| CycGrp | CycGrp |
| DProd | DProd |
| dProj | dProj |
| SimpGrp | SimpGrp |
| mulGrp | mulGrp |
| Rng | Rng |
| 1r | 1r |
| SRing | SRing |
| Ring | Ring |
| CRing | CRing |
| oppr | oppR |
| ∥r | ||r |
| Unit | Unit |
| Irred | Irred |
| invr | invr |
| /r | /r |
| RPrime | RPrime |
| RngHom | RngHom |
| RngIso | RngIso |
| RingHom | RingHom |
| RingIso | RingIso |
| ≃𝑟 | ~=r |
| NzRing | NzRing |
| LRing | LRing |
| SubRng | SubRng |
| SubRing | SubRing |
| RingSpan | RingSpan |
| RngCat | RngCat |
| RingCat | RingCat |
| RLReg | RLReg |
| Domn | Domn |
| IDomn | IDomn |
| DivRing | DivRing |
| Field | Field |
| SubDRing | SubDRing |
| AbsVal | AbsVal |
| *-Ring | *Ring |
| *rf | *rf |
| LMod | LMod |
| ·sf | .sf |
| LSubSp | LSubSp |
| LSpan | LSpan |
| LMHom | LMHom |
| LMIso | LMIso |
| ≃𝑚 | ~=m |
| LBasis | LBasis |
| LVec | LVec |
| subringAlg | subringAlg |
| ringLMod | ringLMod |
| LIdeal | LIdeal |
| RSpan | RSpan |
| 2Ideal | 2Ideal |
| LPIdeal | LPIdeal |
| LPIR | LPIR |
| PID | PID |
| PsMet | PsMet |
| ∞Met | *Met |
| Met | Met |
| ball | ball |
| fBas | fBas |
| filGen | filGen |
| MetOpen | MetOpen |
| metUnif | metUnif |
| ℂfld | CCfld |
| ℤring | ZZring |
| ℤRHom | ZRHom |
| ℤMod | ZMod |
| chr | chr |
| ℤ/nℤ | Z/nZ |
| ℝfld | RRfld |
| PreHil | PreHil |
| ·if | .if |
| ocv | ocv |
| ClSubSp | ClSubSp |
| toHL | toHL |
| proj | proj |
| Hil | Hil |
| OBasis | OBasis |
| ⊕m | (+)m |
| freeLMod | freeLMod |
| unitVec | unitVec |
| LIndF | LIndF |
| LIndS | LIndS |
| AssAlg | AssAlg |
| AlgSpan | AlgSpan |
| algSc | algSc |
| mPwSer | mPwSer |
| mVar | mVar |
| mPoly | mPoly |
| <bag | <bag |
| ordPwSer | ordPwSer |
| evalSub | evalSub |
| eval | eval |
| selectVars | selectVars |
| mHomP | mHomP |
| mPSDer | mPSDer |
| AlgInd | AlgInd |
| PwSer1 | PwSer1 |
| var1 | var1 |
| Poly1 | Poly1 |
| coe1 | coe1 |
| toPoly1 | toPoly1 |
| evalSub1 | evalSub1 |
| eval1 | eval1 |
| maMul | maMul |
| Mat | Mat |
| DMat | DMat |
| ScMat | ScMat |
| maVecMul | maVecMul |
| matRRep | matRRep |
| matRepV | matRepV |
| subMat | subMat |
| maDet | maDet |
| maAdju | maAdju |
| minMatR1 | minMatR1 |
| ConstPolyMat | ConstPolyMat |
| matToPolyMat | matToPolyMat |
| cPolyMatToMat | cPolyMatToMat |
| decompPMat | decompPMat |
| pMatToMatPoly | pMatToMatPoly |
| CharPlyMat | CharPlyMat |
| Top | Top |
| TopOn | TopOn |
| TopSp | TopSp |
| TopBases | TopBases |
| int | int |
| cls | cls |
| Clsd | Clsd |
| nei | nei |
| limPt | limPt |
| Perf | Perf |
| Cn | Cn |
| CnP | CnP |
| ⇝𝑡 | ~~>t |
| Kol2 | Kol2 |
| Fre | Fre |
| Haus | Haus |
| Reg | Reg |
| Nrm | Nrm |
| CNrm | CNrm |
| PNrm | PNrm |
| Comp | Comp |
| Conn | Conn |
| 1stω | 1stc |
| 2ndω | 2ndc |
| Locally | Locally |
| 𝑛-Locally | N-Locally |
| Ref | Ref |
| PtFin | PtFin |
| LocFin | LocFin |
| 𝑘Gen | kGen |
| ×t | tX |
| ↑ko | ^ko |
| KQ | KQ |
| Homeo | Homeo |
| ≃ | ~= |
| Fil | Fil |
| UFil | UFil |
| UFL | UFL |
| FilMap | FilMap |
| fLimf | fLimf |
| fLim | fLim |
| fClus | fClus |
| fClusf | fClusf |
| CnExt | CnExt |
| TopMnd | TopMnd |
| TopGrp | TopGrp |
| tsums | tsums |
| TopRing | TopRing |
| TopDRing | TopDRing |
| TopMod | TopMod |
| TopVec | TopVec |
| UnifOn | UnifOn |
| unifTop | unifTop |
| UnifSt | UnifSt |
| UnifSp | UnifSp |
| toUnifSp | toUnifSp |
| Cnu | uCn |
| CauFilu | CauFilU |
| CUnifSp | CUnifSp |
| ∞MetSp | *MetSp |
| MetSp | MetSp |
| toMetSp | toMetSp |
| norm | norm |
| NrmGrp | NrmGrp |
| toNrmGrp | toNrmGrp |
| NrmRing | NrmRing |
| NrmMod | NrmMod |
| NrmVec | NrmVec |
| normOp | normOp |
| NGHom | NGHom |
| NMHom | NMHom |
| II | II |
| –cn→ | -cn-> |
| Htpy | Htpy |
| PHtpy | PHtpy |
| ≃ph | ~=ph |
| *𝑝 | *p |
| Ω1 | Om1 |
| Ω𝑛 | OmN |
| π1 | pi1 |
| πn | piN |
| ℂMod | CMod |
| ℂVec | CVec |
| ℂPreHil | CPreHil |
| toℂPreHil | toCPreHil |
| CauFil | CauFil |
| Cau | Cau |
| CMet | CMet |
| CMetSp | CMetSp |
| Ban | Ban |
| ℂHil | CHil |
| ℝ^ | RR^ |
| 𝔼hil | EEhil |
| vol* | vol* |
| vol | vol |
| MblFn | MblFn |
| 𝐿1 | L^1 |
| ∫1 | S.1 |
| ∫2 | S.2 |
| ∫ | S. |
| ⨜ | S_ |
| d | _d |
| 0𝑝 | 0p |
| limℂ | limCC |
| D | _D |
| D𝑛 | Dn |
| 𝓑C𝑛 | C^n |
| mDeg | mDeg |
| deg1 | deg1 |
| Monic1p | Monic1p |
| Unic1p | Unic1p |
| quot1p | quot1p |
| rem1p | rem1p |
| idlGen1p | idlGen1p |
| Poly | Poly |
| Xp | Xp |
| coeff | coeff |
| deg | deg |
| quot | quot |
| 𝔸 | AA |
| Tayl | Tayl |
| Ana | Ana |
| ⇝𝑢 | ~~>u |
| log | log |
| ↑𝑐 | ^c |
| logb | logb |
| arcsin | arcsin |
| arccos | arccos |
| arctan | arctan |
| area | area |
| γ | gamma |
| ζ | zeta |
| Γ | _G |
| log Γ | log_G |
| 1/Γ | 1/_G |
| θ | theta |
| Λ | Lam |
| ψ | psi |
| π | ppi |
| μ | mmu |
| σ | sigma |
| DChr | DChr |
| /L | /L |
| 𝑥𝑂 | xO |
| 𝑥𝐿 | xL |
| 𝑥𝑅 | xR |
| 𝑦𝑂 | yO |
| 𝑦𝐿 | yL |
| 𝑦𝑅 | yR |
| 𝑧𝑂 | zO |
| 𝑧𝐿 | zL |
| 𝑧𝑅 | zR |
| No | No |
| <s | <s |
| bday | bday |
| ≤s | <_s |
| <<s | <<s |
| |s | |s |
| 0s | 0s |
| 1s | 1s |
| M | _Made |
| O | _Old |
| N | _New |
| L | _Left |
| R | _Right |
| norec | norec |
| norec2 | norec2 |
| +s | +s |
| -us | -us |
| -s | -s |
| ·s | x.s |
| /su | /su |
| abss | abs_s |
| Ons | On_s |
| seqs | seq_s |
| ℕ0s | NN0_s |
| ℕs | NN_s |
| ℤs | ZZ_s |
| 2s | 2s |
| ↑s | ^su |
| ℤs[1/2] | ZZ_s[1/2] |
| ℝs | RR_s |
| TarskiG | TarskiG |
| Itv | Itv |
| LineG | LineG |
| TarskiGC | TarskiGC |
| TarskiGB | TarskiGB |
| TarskiGCB | TarskiGCB |
| TarskiGE | TarskiGE |
| DimTarskiG≥ | TarskiGDim>= |
| cgrG | cgrG |
| Ismt | Ismt |
| ≤G | leG |
| hlG | hlG |
| pInvG | pInvG |
| ∟G | raG |
| ⟂G | perpG |
| hpG | hpG |
| midG | midG |
| lInvG | lInvG |
| cgrA | cgrA |
| inA | inA |
| ≤∠ | leA |
| eqltrG | eqltrG |
| toTG | toTG |
| 𝔼 | EE |
| Btwn | Btwn |
| Cgr | Cgr |
| EEG | EEG |
| .ef | .ef |
| Vtx | Vtx |
| iEdg | iEdg |
| Edg | Edg |
| UHGraph | UHGraph |
| USHGraph | USHGraph |
| UPGraph | UPGraph |
| UMGraph | UMGraph |
| USPGraph | USPGraph |
| USGraph | USGraph |
| SubGraph | SubGraph |
| FinUSGraph | FinUSGraph |
| NeighbVtx | NeighbVtx |
| UnivVtx | UnivVtx |
| ComplGraph | ComplGraph |
| ComplUSGraph | ComplUSGraph |
| VtxDeg | VtxDeg |
| RegGraph | RegGraph |
| RegUSGraph | RegUSGraph |
| EdgWalks | EdgWalks |
| Walks | Walks |
| WalksOn | WalksOn |
| Trails | Trails |
| TrailsOn | TrailsOn |
| Paths | Paths |
| SPaths | SPaths |
| PathsOn | PathsOn |
| SPathsOn | SPathsOn |
| ClWalks | ClWalks |
| Circuits | Circuits |
| Cycles | Cycles |
| WWalks | WWalks |
| WWalksN | WWalksN |
| WWalksNOn | WWalksNOn |
| WSPathsN | WSPathsN |
| WSPathsNOn | WSPathsNOn |
| ClWWalks | ClWWalks |
| ClWWalksN | ClWWalksN |
| ClWWalksNOn | ClWWalksNOn |
| ConnGraph | ConnGraph |
| EulerPaths | EulerPaths |
| FriendGraph | FriendGraph |
| Plig | Plig |
| GrpOp | GrpOp |
| GId | GId |
| inv | inv |
| /𝑔 | /g |
| AbelOp | AbelOp |
| CVecOLD | CVecOLD |
| NrmCVec | NrmCVec |
| +𝑣 | +v |
| BaseSet | BaseSet |
| ·𝑠OLD | .sOLD |
| 0vec | 0vec |
| −𝑣 | -v |
| normCV | normCV |
| IndMet | IndMet |
| ·𝑖OLD | .iOLD |
| SubSp | SubSp |
| LnOp | LnOp |
| normOpOLD | normOpOLD |
| BLnOp | BLnOp |
| 0op | 0op |
| adj | adj |
| HmOp | HmOp |
| CPreHilOLD | CPreHilOLD |
| CBan | CBan |
| CHilOLD | CHilOLD |
| ℋ | ~H |
| +ℎ | +h |
| ·ℎ | .h |
| 0ℎ | 0h |
| −ℎ | -h |
| ·ih | .ih |
| normℎ | normh |
| Cauchy | Cauchy |
| ⇝𝑣 | ~~>v |
| Sℋ | SH |
| Cℋ | CH |
| ⊥ | _|_ |
| +ℋ | +H |
| span | span |
| ∨ℋ | vH |
| ∨ℋ | \/H |
| 0ℋ | 0H |
| 𝐶ℋ | C_H |
| projℎ | projh |
| 0hop | 0hop |
| Iop | Iop |
| +op | +op |
| ·op | .op |
| −op | -op |
| +fn | +fn |
| ·fn | .fn |
| normop | normop |
| ContOp | ContOp |
| LinOp | LinOp |
| BndLinOp | BndLinOp |
| UniOp | UniOp |
| HrmOp | HrmOp |
| normfn | normfn |
| null | null |
| ContFn | ContFn |
| LinFn | LinFn |
| adjℎ | adjh |
| bra | bra |
| ketbra | ketbra |
| ≤op | <_op |
| eigvec | eigvec |
| eigval | eigval |
| Lambda | Lambda |
| States | States |
| CHStates | CHStates |
| HAtoms | HAtoms |
| ⋖ℋ | <oH |
| 𝑀ℋ | MH |
| 𝑀ℋ* | MH* |
| class-n | class-n |
| class-o | class-o |
| 𝜈 | nu |
| 𝟭 | _Ind |
| _ | _ |
| . | . |
| /𝑒 | /e |
| Monot | Monot |
| MGalConn | MGalConn |
| ≲ | .c_ |
| Chain | Chain |
| oMnd | oMnd |
| oGrp | oGrp |
| toCyc | toCyc |
| sgns | sgns |
| ⋘ | <<< |
| Archi | Archi |
| SLMod | SLMod |
| ~RL | ~RL |
| RLocal | RLocal |
| EuclF | EuclF |
| EDomn | EDomn |
| Frac | Frac |
| fldGen | fldGen |
| oRing | oRing |
| oField | oField |
| ↾v | |`v |
| PrmIdeal | PrmIdeal |
| MaxIdeal | MaxIdeal |
| IDLsrg | IDLsrg |
| Spec | Spec |
| UFD | UFD |
| dim | dim |
| /FldExt | /FldExt |
| /FinExt | /FinExt |
| /AlgExt | /AlgExt |
| [:] | [:] |
| IntgRing | IntgRing |
| minPoly | minPoly |
| Constr | Constr |
| subMat1 | subMat1 |
| litMat | litMat |
| CovHasRef | CovHasRef |
| Ldlf | Ldlf |
| Paracomp | Paracomp |
| ~Met | ~Met |
| pstoMet | pstoMet |
| HCmp | HCmp |
| ℚHom | QQHom |
| ℝHom | RRHom |
| ℝExt | RRExt |
| ℝ*Hom | RR*Hom |
| ManTop | ManTop |
| Σ* | sum* |
| ∘f/c | oFC |
| sigAlgebra | sigAlgebra |
| sigaGen | sigaGen |
| 𝔅ℝ | BrSiga |
| ×s | sX |
| measures | measures |
| δ | Ddelta |
| a.e. | ae |
| ~ a.e. | ~ae |
| MblFnM | MblFnM |
| toOMeas | toOMeas |
| toCaraSiga | toCaraSiga |
| sitg | sitg |
| sitm | sitm |
| itgm | itgm |
| seqstr | seqstr |
| Fibci | Fibci |
| Prob | Prob |
| cprob | cprob |
| rRndVar | rRndVar |
| ∘RV/𝑐 | oRVC |
| repr | repr |
| vts | vts |
| TarskiG2D | TarskiG2D |
| AFS | AFS |
| leftpad | leftpad |
| 𝜑′ | ph' |
| 𝜓′ | ps' |
| 𝜒′ | ch' |
| 𝜃′ | th' |
| 𝜏′ | ta' |
| 𝜂′ | et' |
| 𝜁′ | ze' |
| 𝜎′ | si' |
| 𝜌′ | rh' |
| 𝜑″ | ph" |
| 𝜓″ | ps" |
| 𝜒″ | ch" |
| 𝜃″ | th" |
| 𝜏″ | ta" |
| 𝜂″ | et" |
| 𝜁″ | ze" |
| 𝜎″ | si" |
| 𝜌″ | rh" |
| 𝜑0 | ph0 |
| 𝜓0 | ps0 |
| 𝜒0 | ch0_ |
| 𝜃0 | th0 |
| 𝜏0 | ta0 |
| 𝜂0 | et0 |
| 𝜁0 | ze0 |
| 𝜎0 | si0 |
| 𝜌0 | rh0 |
| 𝜑1 | ph1 |
| 𝜓1 | ps1 |
| 𝜒1 | ch1 |
| 𝜃1 | th1 |
| 𝜏1 | ta1 |
| 𝜂1 | et1 |
| 𝜁1 | ze1 |
| 𝜎1 | si1 |
| 𝜌1 | rh1 |
| 𝑎′ | a' |
| 𝑏′ | b' |
| 𝑐′ | c' |
| 𝑑′ | d' |
| 𝑒′ | e' |
| 𝑓′ | f' |
| 𝑔′ | g' |
| ℎ′ | h' |
| 𝑖′ | i' |
| 𝑗′ | j' |
| 𝑘′ | k' |
| 𝑙′ | l' |
| 𝑚′ | m' |
| 𝑛′ | n' |
| 𝑜′ | o'_ |
| 𝑝′ | p' |
| 𝑞′ | q' |
| 𝑟′ | r' |
| 𝑠′ | s'_ |
| 𝑡′ | t' |
| 𝑢′ | u' |
| 𝑣′ | v'_ |
| 𝑤′ | w' |
| 𝑥′ | x' |
| 𝑦′ | y' |
| 𝑧′ | z' |
| 𝑎″ | a" |
| 𝑏″ | b" |
| 𝑐″ | c" |
| 𝑑″ | d" |
| 𝑒″ | e" |
| 𝑓″ | f" |
| 𝑔″ | g" |
| ℎ″ | h" |
| 𝑖″ | i" |
| 𝑗″ | j" |
| 𝑘″ | k" |
| 𝑙″ | l" |
| 𝑚″ | m" |
| 𝑛″ | n" |
| 𝑜″ | o"_ |
| 𝑝″ | p" |
| 𝑞″ | q" |
| 𝑟″ | r" |
| 𝑠″ | s"_ |
| 𝑡″ | t" |
| 𝑢″ | u" |
| 𝑣″ | v"_ |
| 𝑤″ | w" |
| 𝑥″ | x" |
| 𝑦″ | y" |
| 𝑧″ | z" |
| 𝑎0 | a0_ |
| 𝑏0 | b0_ |
| 𝑐0 | c0_ |
| 𝑑0 | d0 |
| 𝑒0 | e0 |
| 𝑓0 | f0_ |
| 𝑔0 | g0 |
| ℎ0 | h0 |
| 𝑖0 | i0 |
| 𝑗0 | j0 |
| 𝑘0 | k0 |
| 𝑙0 | l0 |
| 𝑚0 | m0 |
| 𝑛0 | n0_ |
| 𝑜0 | o0_ |
| 𝑝0 | p0 |
| 𝑞0 | q0 |
| 𝑟0 | r0 |
| 𝑠0 | s0 |
| 𝑡0 | t0 |
| 𝑢0 | u0 |
| 𝑣0 | v0 |
| 𝑤0 | w0 |
| 𝑥0 | x0 |
| 𝑦0 | y0 |
| 𝑧0 | z0 |
| 𝑎1 | a1_ |
| 𝑏1 | b1_ |
| 𝑐1 | c1_ |
| 𝑑1 | d1 |
| 𝑒1 | e1 |
| 𝑓1 | f1 |
| 𝑔1 | g1 |
| ℎ1 | h1 |
| 𝑖1 | i1 |
| 𝑗1 | j1 |
| 𝑘1 | k1 |
| 𝑙1 | l1 |
| 𝑚1 | m1 |
| 𝑛1 | n1 |
| 𝑜1 | o1_ |
| 𝑝1 | p1 |
| 𝑞1 | q1 |
| 𝑟1 | r1 |
| 𝑠1 | s1 |
| 𝑡1 | t1 |
| 𝑢1 | u1 |
| 𝑣1 | v1 |
| 𝑤1 | w1 |
| 𝑥1 | x1 |
| 𝑦1 | y1 |
| 𝑧1 | z1 |
| 𝐴′ | A' |
| 𝐵′ | B' |
| 𝐶′ | C' |
| 𝐷′ | D' |
| 𝐸′ | E' |
| 𝐹′ | F' |
| 𝐺′ | G' |
| 𝐻′ | H' |
| 𝐼′ | I' |
| 𝐽′ | J' |
| 𝐾′ | K' |
| 𝐿′ | L' |
| 𝑀′ | M' |
| 𝑁′ | N' |
| 𝑂′ | O' |
| 𝑃′ | P' |
| 𝑄′ | Q' |
| 𝑅′ | R' |
| 𝑆′ | S' |
| 𝑇′ | T' |
| 𝑈′ | U' |
| 𝑉′ | V' |
| 𝑊′ | W' |
| 𝑋′ | X' |
| 𝑌′ | Y' |
| 𝑍′ | Z' |
| 𝐴″ | A" |
| 𝐵″ | B" |
| 𝐶″ | C" |
| 𝐷″ | D" |
| 𝐸″ | E" |
| 𝐹″ | F" |
| 𝐺″ | G" |
| 𝐻″ | H" |
| 𝐼″ | I" |
| 𝐽″ | J" |
| 𝐾″ | K" |
| 𝐿″ | L" |
| 𝑀″ | M" |
| 𝑁″ | N" |
| 𝑂″ | O" |
| 𝑃″ | P" |
| 𝑄″ | Q" |
| 𝑅″ | R" |
| 𝑆″ | S" |
| 𝑇″ | T" |
| 𝑈″ | U" |
| 𝑉″ | V" |
| 𝑊″ | W" |
| 𝑋″ | X" |
| 𝑌″ | Y" |
| 𝑍″ | Z" |
| 𝐴0 | A0 |
| 𝐵0 | B0 |
| 𝐶0 | C0 |
| 𝐷0 | D0 |
| 𝐸0 | E0 |
| 𝐹0 | F0 |
| 𝐺0 | G0 |
| 𝐻0 | H0 |
| 𝐼0 | I0 |
| 𝐽0 | J0 |
| 𝐾0 | K0 |
| 𝐿0 | L0 |
| 𝑀0 | M0 |
| 𝑁0 | N0 |
| 𝑂0 | O0 |
| 𝑃0 | P0 |
| 𝑄0 | Q0 |
| 𝑅0 | R0 |
| 𝑆0 | S0 |
| 𝑇0 | T0 |
| 𝑈0 | U0 |
| 𝑉0 | V0 |
| 𝑊0 | W0 |
| 𝑋0 | X0 |
| 𝑌0 | Y0 |
| 𝑍0 | Z0 |
| 𝐴1 | A1_ |
| 𝐵1 | B1_ |
| 𝐶1 | C1_ |
| 𝐷1 | D1_ |
| 𝐸1 | E1 |
| 𝐹1 | F1_ |
| 𝐺1 | G1_ |
| 𝐻1 | H1_ |
| 𝐼1 | I1_ |
| 𝐽1 | J1 |
| 𝐾1 | K1 |
| 𝐿1 | L1_ |
| 𝑀1 | M1_ |
| 𝑁1 | N1 |
| 𝑂1 | O1_ |
| 𝑃1 | P1 |
| 𝑄1 | Q1 |
| 𝑅1 | R1_ |
| 𝑆1 | S1_ |
| 𝑇1 | T1 |
| 𝑈1 | U1 |
| 𝑉1 | V1_ |
| 𝑊1 | W1 |
| 𝑋1 | X1 |
| 𝑌1 | Y1 |
| 𝑍1 | Z1 |
| pred | _pred |
| Se | _Se |
| FrSe | _FrSe |
| trCl | _trCl |
| TrFo | _TrFo |
| AcyclicGraph | AcyclicGraph |
| Retr | Retr |
| PConn | PConn |
| SConn | SConn |
| CovMap | CovMap |
| ∈𝑔 | e.g |
| ⊼𝑔 | |g |
| ∀𝑔 | A.g |
| Fmla | Fmla |
| Sat | Sat |
| Sat∈ | SatE |
| ⊧ | |= |
| =𝑔 | =g |
| ∧𝑔 | /\g |
| ¬𝑔 | -.g |
| →𝑔 | ->g |
| ↔𝑔 | <->g |
| ∨𝑔 | \/g |
| ∃𝑔 | E.g |
| AxExt | AxExt |
| AxRep | AxRep |
| AxPow | AxPow |
| AxUn | AxUn |
| AxReg | AxReg |
| AxInf | AxInf |
| ZF | ZF |
| mCN | mCN |
| mVR | mVR |
| mType | mType |
| mTC | mTC |
| mAx | mAx |
| mVT | mVT |
| mREx | mREx |
| mEx | mEx |
| mDV | mDV |
| mVars | mVars |
| mRSubst | mRSubst |
| mSubst | mSubst |
| mVH | mVH |
| mPreSt | mPreSt |
| mStRed | mStRed |
| mStat | mStat |
| mFS | mFS |
| mCls | mCls |
| mPPSt | mPPSt |
| mThm | mThm |
| m0St | m0St |
| mSA | mSA |
| mWGFS | mWGFS |
| mSyn | mSyn |
| mESyn | mESyn |
| mGFS | mGFS |
| mTree | mTree |
| mST | mST |
| mSAX | mSAX |
| mUFS | mUFS |
| mUV | mUV |
| mVL | mVL |
| mVSubst | mVSubst |
| mFresh | mFresh |
| mFRel | mFRel |
| mEval | mEval |
| mMdl | mMdl |
| mUSyn | mUSyn |
| mGMdl | mGMdl |
| mItp | mItp |
| mFromItp | mFromItp |
| cplMetSp | cplMetSp |
| HomLimB | HomLimB |
| HomLim | HomLim |
| polyFld | polyFld |
| splitFld1 | splitFld1 |
| splitFld | splitFld |
| polySplitLim | polySplitLim |
| ZRing | ZRing |
| GF | GF |
| GF∞ | GF_oo |
| ~Qp | ~Qp |
| /Qp | /Qp |
| Qp | Qp |
| Zp | Zp |
| _Qp | _Qp |
| Cp | Cp |
| CloneOp | CloneOp |
| prj | prj |
| suppos | suppos |
| 𝛻 | al |
| wsuc | wsuc |
| WLim | WLim |
| ⊗ | (x) |
| Bigcup | Bigcup |
| SSet | SSet |
| Trans | Trans |
| Limits | Limits |
| Fix | Fix |
| Funs | Funs |
| Singleton | Singleton |
| Singletons | Singletons |
| Image | Image |
| Cart | Cart |
| Img | Img |
| Domain | Domain |
| Range | Range |
| pprod | pprod |
| Apply | Apply |
| Cup | Cup |
| Cap | Cap |
| Succ | Succ |
| Funpart | Funpart |
| FullFun | FullFun |
| Restrict | Restrict |
| UB | UB |
| LB | LB |
| ⟪ | << |
| ⟫ | >> |
| ×× | XX. |
| OuterFiveSeg | OuterFiveSeg |
| TransportTo | TransportTo |
| InnerFiveSeg | InnerFiveSeg |
| Cgr3 | Cgr3 |
| Colinear | Colinear |
| FiveSeg | FiveSeg |
| Seg≤ | Seg<_ |
| OutsideOf | OutsideOf |
| Line | Line |
| LinesEE | LinesEE |
| Ray | Ray |
| △ | _/_\ |
| △n | _/_\^n |
| Hf | Hf |
| Fne | Fne |
| gcdOLD | gcdOLD |
| Prv | Prv |
| ∃** | E** |
| Ⅎ' | F// |
| { | {{ |
| } | }} |
| sngl | sngl |
| tag | tag |
| Proj | Proj |
| ⦅ | (| |
| , | ,, |
| ⦆ | |) |
| pr1 | pr1 |
| pr2 | pr2 |
| elwise | elwise |
| Moore | Moore_ |
| Set⟶ | -Set-> |
| Top⟶ | -Top-> |
| Mgm⟶ | -Mgm-> |
| TopMgm⟶ | -TopMgm-> |
| curry_ | curry_ |
| uncurry_ | uncurry_ |
| [ | [s |
| ]struct | ]s |
| ℝ≥0 | RR>=0 |
| ℝ>0 | RR>0 |
| Id | _Id |
| 𝒫* | ~P_* |
| 𝒫* | ~P^* |
| {R | {R |
| +∞eiτ | inftyexpitau |
| ℂ∞N | CCinftyN |
| 1/2 | 1/2 |
| +∞ei | inftyexpi |
| ℂ∞ | CCinfty |
| ℂ̅ | CCbar |
| +∞ | pinfty |
| -∞ | minfty |
| ℝ̅ | RRbar |
| ∞ | infty |
| ℂ̂ | CChat |
| ℝ̂ | RRhat |
| +ℂ̅ | +cc |
| -ℂ̅ | -cc |
| <ℝ̅ | <rr |
| Arg | Arg |
| ·ℂ̅ | .cc |
| -1ℂ̅ | invc |
| iω↪ℕ | iomnn |
| ℕ̅ | NNbar |
| ℤ̅ | ZZbar |
| ℤ̂ | ZZhat |
| ∥ℂ | ||C |
| FinSum | FinSum |
| ℝ-Vec | RRVec |
| End | End |
| ↑↑ | ^^ |
| TotBnd | TotBnd |
| Bnd | Bnd |
| Ismty | Ismty |
| ℝn | Rn |
| Ass | Ass |
| ExId | ExId |
| Magma | Magma |
| SemiGrp | SemiGrp |
| MndOp | MndOp |
| GrpOpHom | GrpOpHom |
| RingOps | RingOps |
| DivRingOps | DivRingOps |
| RingOpsHom | RingOpsHom |
| RingOpsIso | RingOpsIso |
| ≃𝑟 | ~=R |
| Com2 | Com2 |
| Fld | Fld |
| CRingOps | CRingOps |
| Idl | Idl |
| PrIdl | PrIdl |
| MaxIdl | MaxIdl |
| PrRing | PrRing |
| Dmn | Dmn |
| IdlGen | IdlGen |
| ⋉ | |X. |
| ≀ | ,~ |
| ∼ | ~ |
| Rels | Rels |
| S | _S |
| Refs | Refs |
| RefRels | RefRels |
| RefRel | RefRel |
| CnvRefs | CnvRefs |
| CnvRefRels | CnvRefRels |
| CnvRefRel | CnvRefRel |
| Syms | Syms |
| SymRels | SymRels |
| SymRel | SymRel |
| Trs | Trs |
| TrRels | TrRels |
| TrRel | TrRel |
| EqvRels | EqvRels |
| EqvRel | EqvRel |
| CoElEqvRels | CoElEqvRels |
| CoElEqvRel | CoElEqvRel |
| Redunds | Redunds |
| Redund | Redund |
| redund | redund |
| DomainQss | DomainQss |
| DomainQs | DomainQs |
| Ers | Ers |
| ErALTV | ErALTV |
| CoMembErs | CoMembErs |
| CoMembEr | CoMembEr |
| Funss | Funss |
| FunsALTV | FunsALTV |
| FunALTV | FunALTV |
| Disjss | Disjss |
| Disjs | Disjs |
| Disj | Disj |
| ElDisjs | ElDisjs |
| ElDisj | ElDisj |
| AntisymRel | AntisymRel |
| Parts | Parts |
| Part | Part |
| MembParts | MembParts |
| MembPart | MembPart |
| Prt | Prt |
| LSAtoms | LSAtoms |
| LSHyp | LSHyp |
| ⋖L | <oL |
| LFnl | LFnl |
| LKer | LKer |
| LDual | LDual |
| OP | OP |
| cm | cm |
| OL | OL |
| OML | OML |
| ⋖ | <o |
| Atoms | Atoms |
| AtLat | AtLat |
| CvLat | CvLat |
| HL | HL |
| LLines | LLines |
| LPlanes | LPlanes |
| LVols | LVols |
| Lines | Lines |
| Points | Points |
| PSubSp | PSubSp |
| pmap | pmap |
| +𝑃 | +P |
| PCl | PCl |
| ⊥𝑃 | _|_P |
| PSubCl | PSubCl |
| LHyp | LHyp |
| LAut | LAut |
| WAtoms | WAtoms |
| PAut | PAut |
| LDil | LDil |
| LTrn | LTrn |
| Dil | Dil |
| Trn | Trn |
| trL | trL |
| TGrp | TGrp |
| TEndo | TEndo |
| EDRing | EDRing |
| EDRingR | EDRingR |
| DVecA | DVecA |
| DIsoA | DIsoA |
| DVecH | DVecH |
| ocA | ocA |
| vA | vA |
| DIsoB | DIsoB |
| DIsoC | DIsoC |
| DIsoH | DIsoH |
| ocH | ocH |
| joinH | joinH |
| LPol | LPol |
| LCDual | LCDual |
| mapd | mapd |
| HVMap | HVMap |
| HDMap1 | HDMap1 |
| HDMap | HDMap |
| HGMap | HGMap |
| HLHil | HLHil |
| CSRing | CSRing |
| PrimRoots | PrimRoots |
| −ℝ | -R |
| ℙ𝕣𝕠𝕛 | PrjSp |
| ℙ𝕣𝕠𝕛n | PrjSpn |
| ℙ𝕣𝕠𝕛Crv | PrjCrv |
| NoeACS | NoeACS |
| mzPolyCld | mzPolyCld |
| mzPoly | mzPoly |
| Dioph | Dioph |
| Pell1QR | Pell1QR |
| Pell14QR | Pell14QR |
| Pell1234QR | Pell1234QR |
| PellFund | PellFund |
| ◻NN | []NN |
| Xrm | rmX |
| Yrm | rmY |
| LFinGen | LFinGen |
| LNoeM | LNoeM |
| LNoeR | LNoeR |
| ldgIdlSeq | ldgIdlSeq |
| Monic | Monic |
| Poly< | Poly< |
| degAA | degAA |
| minPolyAA | minPolyAA |
| ℤ | _ZZ |
| IntgOver | IntgOver |
| MEndo | MEndo |
| CytP | CytP |
| TopSep | TopSep |
| TopLnd | TopLnd |
| r* | r* |
| hereditary | hereditary |
| MndRing | MndRing |
| Scott | Scott |
| Coll | Coll |
| C𝑐 | _Cc |
| +𝑟 | +r |
| -𝑟 | -r |
| .𝑣 | .v |
| PtDf | PtDf |
| RR3 | RR3 |
| line3 | line3 |
| ( | (. |
| ) | ). |
| ▶ | ->. |
| → | ->.. |
| , | ,. |
| RelPres | RelPres |
| lim inf | liminf |
| ~~>* | ~~>* |
| SAlg | SAlg |
| SalOn | SalOn |
| SalGen | SalGen |
| Σ^ | sum^ |
| Meas | Meas |
| OutMeas | OutMeas |
| CaraGen | CaraGen |
| voln* | voln* |
| voln | voln |
| SMblFn | SMblFn |
| UpWord | UpWord |
| jph | jph |
| jps | jps |
| jch | jch |
| jth | jth |
| jta | jta |
| jet | jet |
| jze | jze |
| jps | jsi |
| jrh | jrh |
| jmu | jmu |
| jla | jla |
| ℩' | iota' |
| defAt | defAt |
| ''' | ''' |
| (( | (( |
| )) | )) |
| '''' | '''' |
| _∉ | e// |
| RePart | RePart |
| ⇄ | <> |
| Pairs | Pairs |
| Pairsproper | PrPairs |
| FermatNo | FermatNo |
| Even | Even |
| Odd | Odd |
| FPPr | FPPr |
| GoldbachEven | GoldbachEven |
| GoldbachOddW | GoldbachOddW |
| GoldbachOdd | GoldbachOdd |
| ClNeighbVtx | ClNeighbVtx |
| ISubGr | ISubGr |
| GraphIsom | GraphIsom |
| GraphIso | GraphIso |
| ≃𝑔𝑟 | ~=gr |
| GrTriangles | GrTriangles |
| StarGr | StarGr |
| GraphLocIso | GraphLocIso |
| ≃𝑙𝑔𝑟 | ~=lgr |
| gPetersenGr | gPetersenGr |
| UPWalks | UPWalks |
| clLaw | clLaw |
| assLaw | assLaw |
| comLaw | comLaw |
| intOp | intOp |
| clIntOp | clIntOp |
| assIntOp | assIntOp |
| MgmALT | MgmALT |
| CMgmALT | CMgmALT |
| SGrpALT | SGrpALT |
| CSGrpALT | CSGrpALT |
| RngCatALTV | RngCatALTV |
| RingCatALTV | RingCatALTV |
| DMatALT | DMatALT |
| ScMatALT | ScMatALT |
| linC | linC |
| LinCo | LinCo |
| linIndS | linIndS |
| linDepS | linDepS |
| /f | /_f |
| Ο | _O |
| #b | #b |
| digit | digit |
| -aryF | -aryF |
| IterComp | IterComp |
| Ack | Ack |
| LineM | LineM |
| Sphere | Sphere |
| oppFunc | oppFunc |
| UP | UP |
| swapF | swapF |
| ∘F | o.F |
| −∘F | -o.F |
| ThinCat | ThinCat |
| TermCat | TermCat |
| ProsetToCat | ProsetToCat |
| MndToCat | MndToCat |
| Lan | Lan |
| Ran | Ran |
| setrecs | setrecs |
| Pg | Pg |
| ≥ | >_ |
| > | > |
| sinh | sinh |
| cosh | cosh |
| tanh | tanh |
| sec | sec |
| csc | csc |
| cot | cot |
| log_ | log_ |
| Reflexive | Reflexive |
| Irreflexive | Irreflexive |
| ∀! | A! |
| Copyright terms: Public domain | W3C validator |