Metamath Proof Explorer |
This is the Unicode version. Change to GIF version |
Symbol | ASCII |
( | ( |
) | ) |
→ | -> |
¬ | -. |
wff | wff |
⊢ | |- |
& | & |
⇒ | => |
𝜑 | ph |
𝜓 | ps |
𝜒 | ch |
𝜃 | th |
𝜏 | ta |
𝜂 | et |
𝜁 | ze |
𝜎 | si |
𝜌 | rh |
𝜇 | mu |
𝜆 | la |
𝜅 | ka |
↔ | <-> |
∧ | /\ |
∨ | \/ |
, | , |
if- | if- |
⊼ | -/\ |
⊻ | \/_ |
⊽ | -\/ |
∀ | A. |
setvar | setvar |
𝑥 | x |
class | class |
= | = |
𝐴 | A |
𝐵 | B |
⊤ | T. |
𝑦 | y |
⊥ | F. |
hadd | hadd |
cadd | cadd |
𝑧 | z |
𝑤 | w |
𝑣 | v |
𝑢 | u |
𝑡 | t |
∃ | E. |
Ⅎ | F/ |
𝑓 | f |
𝑔 | g |
𝑠 | s |
[ | [ |
/ | / |
] | ] |
∈ | e. |
∃* | E* |
∃! | E! |
{ | { |
∣ | | |
} | } |
∧ | ./\ |
∨ | .\/ |
≤ | .<_ |
< | .< |
+ | .+ |
− | .- |
× | .X. |
/ | ./ |
↑ | .^ |
0 | .0. |
1 | .1. |
∥ | .|| |
∼ | .~ |
⊥ | ._|_ |
⨣ | .+^ |
✚ | .+b |
⊕ | .(+) |
∗ | .* |
· | .x. |
∙ | .xb |
, | ., |
⊗ | .(x) |
⚬ | .o. |
𝟎 | .0b |
𝐶 | C |
𝐷 | D |
𝑃 | P |
𝑄 | Q |
𝑅 | R |
𝑆 | S |
𝑇 | T |
𝑈 | U |
𝑒 | e |
ℎ | h |
𝑖 | i |
𝑗 | j |
𝑘 | k |
𝑚 | m |
𝑛 | n |
𝑜 | o |
𝐸 | E |
𝐹 | F |
𝐺 | G |
𝐻 | H |
𝐼 | I |
𝐽 | J |
𝐾 | K |
𝐿 | L |
𝑀 | M |
𝑁 | N |
𝑉 | V |
𝑊 | W |
𝑋 | X |
𝑌 | Y |
𝑍 | Z |
𝑂 | O |
𝑟 | r |
𝑞 | q |
𝑝 | p |
𝑎 | a |
𝑏 | b |
𝑐 | c |
𝑑 | d |
𝑙 | l |
Ⅎ | F/_ |
≠ | =/= |
∉ | e/ |
V | _V |
CondEq | CondEq |
[ | [. |
] | ]. |
⦋ | [_ |
⦌ | ]_ |
∖ | \ |
∪ | u. |
∩ | i^i |
⊆ | C_ |
⊊ | C. |
△ | /_\ |
∅ | (/) |
if | if |
𝒫 | ~P |
〈 | <. |
〉 | >. |
∪ | U. |
∩ | |^| |
∪ | U_ |
∩ | |^|_ |
Disj | Disj_ |
↦ | |-> |
Tr | Tr |
I | _I |
E | _E |
Po | Po |
Or | Or |
Fr | Fr |
Se | Se |
We | We |
× | X. |
◡ | `' |
dom | dom |
ran | ran |
↾ | |` |
“ | " |
∘ | o. |
Rel | Rel |
Pred | Pred |
Ord | Ord |
On | On |
Lim | Lim |
suc | suc |
℩ | iota |
: | : |
Fun | Fun |
Fn | Fn |
⟶ | --> |
–1-1→ | -1-1-> |
–onto→ | -onto-> |
–1-1-onto→ | -1-1-onto-> |
‘ | ` |
Isom | Isom |
℩ | iota_ |
∘f | oF |
∘r | oR |
[⊊] | [C.] |
ω | _om |
1st | 1st |
2nd | 2nd |
supp | supp |
tpos | tpos |
curry | curry |
uncurry | uncurry |
Undef | Undef |
frecs | frecs |
wrecs | wrecs |
Smo | Smo |
recs | recs |
rec | rec |
seqω | seqom |
1o | 1o |
2o | 2o |
3o | 3o |
4o | 4o |
+o | +o |
·o | .o |
↑o | ^o |
Er | Er |
/ | /. |
↑m | ^m |
↑pm | ^pm |
X | X_ |
≈ | ~~ |
≼ | ~<_ |
≺ | ~< |
Fin | Fin |
finSupp | finSupp |
fi | fi |
sup | sup |
inf | inf |
OrdIso | OrdIso |
har | har |
≼* | ~<_* |
CNF | CNF |
t++ | t++ |
TC | TC |
𝑅1 | R1 |
rank | rank |
⊔ | |_| |
inl | inl |
inr | inr |
card | card |
ℵ | aleph |
cf | cf |
AC | AC_ |
CHOICE | CHOICE |
FinIa | Fin1a |
FinII | Fin2 |
FinIII | Fin3 |
FinIV | Fin4 |
FinV | Fin5 |
FinVI | Fin6 |
FinVII | Fin7 |
GCH | GCH |
Inaccw | InaccW |
Inacc | Inacc |
WUni | WUni |
wUniCl | wUniCl |
Tarski | Tarski |
Univ | Univ |
tarskiMap | tarskiMap |
N | N. |
+N | +N |
·N | .N |
<N | <N |
+pQ | +pQ |
·pQ | .pQ |
<pQ | <pQ |
~Q | ~Q |
Q | Q. |
1Q | 1Q |
[Q] | /Q |
+Q | +Q |
·Q | .Q |
*Q | *Q |
<Q | <Q |
P | P. |
1P | 1P |
+P | +P. |
·P | .P. |
<P | <P |
~R | ~R |
R | R. |
0R | 0R |
1R | 1R |
-1R | -1R |
+R | +R |
·R | .R |
<R | <R |
<ℝ | <RR |
ℂ | CC |
ℝ | RR |
0 | 0 |
1 | 1 |
i | _i |
+ | + |
· | x. |
≤ | <_ |
+∞ | +oo |
-∞ | -oo |
ℝ* | RR* |
< | < |
− | - |
- | -u |
ℕ | NN |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
7 | 7 |
8 | 8 |
9 | 9 |
ℕ0 | NN0 |
ℕ0* | NN0* |
ℤ | ZZ |
; | ; |
ℤ≥ | ZZ>= |
ℚ | |
ℝ+ | RR+ |
-𝑒 | -e |
+𝑒 | +e |
·e | *e |
(,) | (,) |
(,] | (,] |
[,) | [,) |
[,] | [,] |
... | ... |
..^ | ..^ |
⌊ | |_ |
⌈ | |^ |
mod | mod |
≡ | == |
seq | seq |
↑ | ^ |
! | ! |
C | _C |
♯ | # |
Word | Word |
lastS | lastS |
++ | ++ |
〈“ | <" |
”〉 | "> |
substr | substr |
prefix | prefix |
splice | splice |
reverse | reverse |
repeatS | repeatS |
cyclShift | cyclShift |
cyclShiftOLD | cyclShiftOLD |
t+ | t+ |
t* | t* |
↑𝑟 | ^r |
t*rec | t*rec |
shift | shift |
sgn | sgn |
ℜ | Re |
ℑ | Im |
∗ | * |
√ | sqrt |
abs | abs |
± | +- |
lim sup | limsup |
⇝ | ~~> |
⇝𝑟 | ~~>r |
𝑂(1) | O(1) |
≤𝑂(1) | <_O(1) |
Σ | sum_ |
∏ | prod_ |
FallFac | FallFac |
RiseFac | RiseFac |
BernPoly | BernPoly |
exp | exp |
e | _e |
sin | sin |
cos | cos |
tan | tan |
π | _pi |
τ | _tau |
∥ | || |
bits | bits |
sadd | sadd |
smul | smul |
gcd | gcd |
lcm | lcm |
lcm | _lcm |
ℙ | Prime |
numer | numer |
denom | denom |
odℤ | odZ |
ϕ | phi |
pCnt | pCnt |
ℤ[i] | Z[i] |
AP | AP |
MonoAP | MonoAP |
PolyAP | PolyAP |
Ramsey | Ramsey |
#p | #p |
Struct | Struct |
sSet | sSet |
Slot | Slot |
ndx | ndx |
Base | Base |
↾s | |`s |
+g | +g |
.r | .r |
*𝑟 | *r |
Scalar | Scalar |
·𝑠 | .s |
·𝑖 | .i |
TopSet | TopSet |
le | le |
oc | oc |
dist | dist |
UnifSet | UnifSet |
Hom | Hom |
comp | comp |
↾t | |`t |
TopOpen | TopOpen |
topGen | topGen |
∏t | Xt_ |
0g | 0g |
Σg | gsum |
Xs | Xs_ |
↑s | ^s |
ordTop | ordTop |
ℝ*𝑠 | RR*s |
“s | "s |
/s | /s |
qTop | qTop |
×s | Xs. |
Moore | Moore |
mrCls | mrCls |
mrInd | mrInd |
ACS | ACS |
Cat | Cat |
Id | Id |
Homf | Homf |
compf | comf |
oppCat | oppCat |
Mono | Mono |
Epi | Epi |
Sect | Sect |
Inv | Inv |
Iso | Iso |
≃𝑐 | ~=c |
⊆cat | C_cat |
↾cat | |`cat |
Subcat | Subcat |
Func | Func |
idfunc | idFunc |
∘func | o.func |
↾f | |`f |
Full | Full |
Faith | Faith |
Nat | Nat |
FuncCat | FuncCat |
InitO | InitO |
TermO | TermO |
ZeroO | ZeroO |
doma | domA |
coda | codA |
Arrow | Arrow |
Homa | HomA |
Ida | IdA |
compa | compA |
SetCat | SetCat |
CatCat | CatCat |
ExtStrCat | ExtStrCat |
×c | Xc. |
1stF | 1stF |
2ndF | 2ndF |
〈,〉F | pairF |
evalF | evalF |
curryF | curryF |
uncurryF | uncurryF |
Δfunc | DiagFunc |
HomF | HomF |
Yon | Yon |
ODual | ODual |
Proset | Proset |
Dirset | Dirset |
Poset | Poset |
lt | lt |
lub | lub |
glb | glb |
join | join |
meet | meet |
Toset | Toset |
1. | 1. |
0. | 0. |
Lat | Lat |
CLat | CLat |
DLat | DLat |
toInc | toInc |
PosetRel | PosetRel |
TosetRel | TosetRel |
DirRel | DirRel |
tail | tail |
+𝑓 | +f |
Mgm | Mgm |
Smgrp | Smgrp |
Mnd | Mnd |
MndHom | MndHom |
SubMnd | SubMnd |
freeMnd | freeMnd |
varFMnd | varFMnd |
EndoFMnd | EndoFMnd |
Grp | Grp |
invg | invg |
-g | -g |
.g | .g |
~QG | ~QG |
SubGrp | SubGrp |
NrmSGrp | NrmSGrp |
GrpHom | GrpHom |
GrpIso | GrpIso |
≃𝑔 | ~=g |
GrpAct | GrpAct |
Cntr | Cntr |
Cntz | Cntz |
oppg | oppG |
SymGrp | SymGrp |
pmTrsp | pmTrsp |
pmSgn | pmSgn |
pmEven | pmEven |
od | od |
gEx | gEx |
pGrp | pGrp |
pSyl | pSyl |
LSSum | LSSum |
proj1 | proj1 |
~FG | ~FG |
freeGrp | freeGrp |
varFGrp | varFGrp |
CMnd | CMnd |
Abel | Abel |
CycGrp | CycGrp |
DProd | DProd |
dProj | dProj |
SimpGrp | SimpGrp |
mulGrp | mulGrp |
1r | 1r |
SRing | SRing |
Ring | Ring |
CRing | CRing |
oppr | oppR |
∥r | ||r |
Unit | Unit |
Irred | Irred |
invr | invr |
/r | /r |
RPrime | RPrime |
RingHom | RingHom |
RingIso | RingIso |
≃𝑟 | ~=r |
DivRing | DivRing |
Field | Field |
SubRing | SubRing |
RingSpan | RingSpan |
SubDRing | SubDRing |
AbsVal | AbsVal |
*-Ring | *Ring |
*rf | *rf |
LMod | LMod |
·sf | .sf |
LSubSp | LSubSp |
LSpan | LSpan |
LMHom | LMHom |
LMIso | LMIso |
≃𝑚 | ~=m |
LBasis | LBasis |
LVec | LVec |
subringAlg | subringAlg |
ringLMod | ringLMod |
RSpan | RSpan |
LIdeal | LIdeal |
2Ideal | 2Ideal |
LPIdeal | LPIdeal |
LPIR | LPIR |
NzRing | NzRing |
RLReg | RLReg |
Domn | Domn |
IDomn | IDomn |
PID | PID |
PsMet | PsMet |
∞Met | *Met |
Met | Met |
ball | ball |
fBas | fBas |
filGen | filGen |
MetOpen | MetOpen |
metUnif | metUnif |
ℂfld | CCfld |
ℤring | ZZring |
ℤRHom | ZRHom |
ℤMod | ZMod |
chr | chr |
ℤ/nℤ | Z/nZ |
ℝfld | RRfld |
PreHil | PreHil |
·if | .if |
ocv | ocv |
ClSubSp | ClSubSp |
toHL | toHL |
proj | proj |
Hil | Hil |
OBasis | OBasis |
⊕m | (+)m |
freeLMod | freeLMod |
unitVec | unitVec |
LIndF | LIndF |
LIndS | LIndS |
AssAlg | AssAlg |
AlgSpan | AlgSpan |
algSc | algSc |
mPwSer | mPwSer |
mVar | mVar |
mPoly | mPoly |
<bag | <bag |
ordPwSer | ordPwSer |
evalSub | evalSub |
eval | eval |
selectVars | selectVars |
mHomP | mHomP |
mPSDer | mPSDer |
AlgInd | AlgInd |
PwSer1 | PwSer1 |
var1 | var1 |
Poly1 | Poly1 |
coe1 | coe1 |
toPoly1 | toPoly1 |
evalSub1 | evalSub1 |
eval1 | eval1 |
maMul | maMul |
Mat | Mat |
DMat | DMat |
ScMat | ScMat |
maVecMul | maVecMul |
matRRep | matRRep |
matRepV | matRepV |
subMat | subMat |
maDet | maDet |
maAdju | maAdju |
minMatR1 | minMatR1 |
ConstPolyMat | ConstPolyMat |
matToPolyMat | matToPolyMat |
cPolyMatToMat | cPolyMatToMat |
decompPMat | decompPMat |
pMatToMatPoly | pMatToMatPoly |
CharPlyMat | CharPlyMat |
Top | Top |
TopOn | TopOn |
TopSp | TopSp |
TopBases | TopBases |
int | int |
cls | cls |
Clsd | Clsd |
nei | nei |
limPt | limPt |
Perf | Perf |
Cn | Cn |
CnP | CnP |
⇝𝑡 | ~~>t |
Kol2 | Kol2 |
Fre | Fre |
Haus | Haus |
Reg | Reg |
Nrm | Nrm |
CNrm | CNrm |
PNrm | PNrm |
Comp | Comp |
Conn | Conn |
1stω | 1stc |
2ndω | 2ndc |
Locally | Locally |
𝑛-Locally | N-Locally |
Ref | Ref |
PtFin | PtFin |
LocFin | LocFin |
𝑘Gen | kGen |
×t | tX |
↑ko | ^ko |
KQ | KQ |
Homeo | Homeo |
≃ | ~= |
Fil | Fil |
UFil | UFil |
UFL | UFL |
FilMap | FilMap |
fLimf | fLimf |
fLim | fLim |
fClus | fClus |
fClusf | fClusf |
CnExt | CnExt |
TopMnd | TopMnd |
TopGrp | TopGrp |
tsums | tsums |
TopRing | TopRing |
TopDRing | TopDRing |
TopMod | TopMod |
TopVec | TopVec |
UnifOn | UnifOn |
unifTop | unifTop |
UnifSt | UnifSt |
UnifSp | UnifSp |
toUnifSp | toUnifSp |
Cnu | uCn |
CauFilu | CauFilU |
CUnifSp | CUnifSp |
∞MetSp | *MetSp |
MetSp | MetSp |
toMetSp | toMetSp |
norm | norm |
NrmGrp | NrmGrp |
toNrmGrp | toNrmGrp |
NrmRing | NrmRing |
NrmMod | NrmMod |
NrmVec | NrmVec |
normOp | normOp |
NGHom | NGHom |
NMHom | NMHom |
II | II |
–cn→ | -cn-> |
Htpy | Htpy |
PHtpy | PHtpy |
≃ph | ~=ph |
*𝑝 | *p |
Ω1 | Om1 |
Ω𝑛 | OmN |
π1 | pi1 |
πn | piN |
ℂMod | CMod |
ℂVec | CVec |
ℂPreHil | CPreHil |
toℂPreHil | toCPreHil |
CauFil | CauFil |
Cau | Cau |
CMet | CMet |
CMetSp | CMetSp |
Ban | Ban |
ℂHil | CHil |
ℝ^ | RR^ |
𝔼hil | EEhil |
vol* | vol* |
vol | vol |
MblFn | MblFn |
𝐿1 | L^1 |
∫1 | S.1 |
∫2 | S.2 |
∫ | S. |
⨜ | S_ |
d | _d |
0𝑝 | 0p |
limℂ | limCC |
D | _D |
D𝑛 | Dn |
𝓑C𝑛 | C^n |
mDeg | mDeg |
deg1 | deg1 |
Monic1p | Monic1p |
Unic1p | Unic1p |
quot1p | quot1p |
rem1p | rem1p |
idlGen1p | idlGen1p |
Poly | Poly |
Xp | Xp |
coeff | coeff |
deg | deg |
quot | quot |
𝔸 | AA |
Tayl | Tayl |
Ana | Ana |
⇝𝑢 | ~~>u |
log | log |
↑𝑐 | ^c |
logb | logb |
arcsin | arcsin |
arccos | arccos |
arctan | arctan |
area | area |
γ | gamma |
ζ | zeta |
Γ | _G |
log Γ | log_G |
1/Γ | 1/_G |
θ | theta |
Λ | Lam |
ψ | psi |
π | ppi |
μ | mmu |
σ | sigma |
DChr | DChr |
/L | /L |
TarskiG | TarskiG |
Itv | Itv |
LineG | LineG |
TarskiGC | TarskiGC |
TarskiGB | TarskiGB |
TarskiGCB | TarskiGCB |
TarskiGE | TarskiGE |
DimTarskiG≥ | TarskiGDim>= |
cgrG | cgrG |
Ismt | Ismt |
≤G | leG |
hlG | hlG |
pInvG | pInvG |
∟G | raG |
⟂G | perpG |
hpG | hpG |
midG | midG |
lInvG | lInvG |
cgrA | cgrA |
inA | inA |
≤∠ | leA |
eqltrG | eqltrG |
toTG | toTG |
𝔼 | EE |
Btwn | Btwn |
Cgr | Cgr |
EEG | EEG |
.ef | .ef |
Vtx | Vtx |
iEdg | iEdg |
Edg | Edg |
UHGraph | UHGraph |
USHGraph | USHGraph |
UPGraph | UPGraph |
UMGraph | UMGraph |
USPGraph | USPGraph |
USGraph | USGraph |
SubGraph | SubGraph |
FinUSGraph | FinUSGraph |
NeighbVtx | NeighbVtx |
UnivVtx | UnivVtx |
ComplGraph | ComplGraph |
ComplUSGraph | ComplUSGraph |
VtxDeg | VtxDeg |
RegGraph | RegGraph |
RegUSGraph | RegUSGraph |
EdgWalks | EdgWalks |
Walks | Walks |
WalksOn | WalksOn |
Trails | Trails |
TrailsOn | TrailsOn |
Paths | Paths |
SPaths | SPaths |
PathsOn | PathsOn |
SPathsOn | SPathsOn |
ClWalks | ClWalks |
Circuits | Circuits |
Cycles | Cycles |
WWalks | WWalks |
WWalksN | WWalksN |
WWalksNOn | WWalksNOn |
WSPathsN | WSPathsN |
WSPathsNOn | WSPathsNOn |
ClWWalks | ClWWalks |
ClWWalksN | ClWWalksN |
ClWWalksNOn | ClWWalksNOn |
ConnGraph | ConnGraph |
EulerPaths | EulerPaths |
FriendGraph | FriendGraph |
Plig | Plig |
GrpOp | GrpOp |
GId | GId |
inv | inv |
/𝑔 | /g |
AbelOp | AbelOp |
CVecOLD | CVecOLD |
NrmCVec | NrmCVec |
+𝑣 | +v |
BaseSet | BaseSet |
·𝑠OLD | .sOLD |
0vec | 0vec |
−𝑣 | -v |
normCV | normCV |
IndMet | IndMet |
·𝑖OLD | .iOLD |
SubSp | SubSp |
LnOp | LnOp |
normOpOLD | normOpOLD |
BLnOp | BLnOp |
0op | 0op |
adj | adj |
HmOp | HmOp |
CPreHilOLD | CPreHilOLD |
CBan | CBan |
CHilOLD | CHilOLD |
ℋ | ~H |
+ℎ | +h |
·ℎ | .h |
0ℎ | 0h |
−ℎ | -h |
·ih | .ih |
normℎ | normh |
Cauchy | Cauchy |
⇝𝑣 | ~~>v |
Sℋ | SH |
Cℋ | CH |
⊥ | _|_ |
+ℋ | +H |
span | span |
∨ℋ | vH |
∨ℋ | \/H |
0ℋ | 0H |
𝐶ℋ | C_H |
projℎ | projh |
0hop | 0hop |
Iop | Iop |
+op | +op |
·op | .op |
−op | -op |
+fn | +fn |
·fn | .fn |
normop | normop |
ContOp | ContOp |
LinOp | LinOp |
BndLinOp | BndLinOp |
UniOp | UniOp |
HrmOp | HrmOp |
normfn | normfn |
null | null |
ContFn | ContFn |
LinFn | LinFn |
adjℎ | adjh |
bra | bra |
ketbra | ketbra |
≤op | <_op |
eigvec | eigvec |
eigval | eigval |
Lambda | Lambda |
States | States |
CHStates | CHStates |
HAtoms | HAtoms |
⋖ℋ | <oH |
𝑀ℋ | MH |
𝑀ℋ* | MH* |
class-n | class-n |
class-o | class-o |
_ | _ |
. | . |
/𝑒 | /e |
Monot | Monot |
MGalConn | MGalConn |
≲ | .c_ |
oMnd | oMnd |
oGrp | oGrp |
toCyc | toCyc |
sgns | sgns |
⋘ | <<< |
Archi | Archi |
SLMod | SLMod |
oRing | oRing |
oField | oField |
↾v | |`v |
PrmIdeal | PrmIdeal |
MaxIdeal | MaxIdeal |
IDLsrg | IDLsrg |
Spec | Spec |
UFD | UFD |
dim | dim |
/FldExt | /FldExt |
/FinExt | /FinExt |
/AlgExt | /AlgExt |
[:] | [:] |
subMat1 | subMat1 |
litMat | litMat |
CovHasRef | CovHasRef |
Ldlf | Ldlf |
Paracomp | Paracomp |
~Met | ~Met |
pstoMet | pstoMet |
HCmp | HCmp |
ℚHom | QQHom |
ℝHom | RRHom |
ℝExt | RRExt |
ℝ*Hom | RR*Hom |
ManTop | ManTop |
𝟭 | _Ind |
Σ* | sum* |
∘f/c | oFC |
sigAlgebra | sigAlgebra |
sigaGen | sigaGen |
𝔅ℝ | BrSiga |
×s | sX |
measures | measures |
δ | Ddelta |
a.e. | ae |
~ a.e. | ~ae |
MblFnM | MblFnM |
toOMeas | toOMeas |
toCaraSiga | toCaraSiga |
sitg | sitg |
sitm | sitm |
itgm | itgm |
seqstr | seqstr |
Fibci | Fibci |
Prob | Prob |
cprob | cprob |
rRndVar | rRndVar |
∘RV/𝑐 | oRVC |
repr | repr |
vts | vts |
TarskiG2D | TarskiG2D |
AFS | AFS |
leftpad | leftpad |
𝜑′ | ph' |
𝜓′ | ps' |
𝜒′ | ch' |
𝜃′ | th' |
𝜏′ | ta' |
𝜂′ | et' |
𝜁′ | ze' |
𝜎′ | si' |
𝜌′ | rh' |
𝜑″ | ph" |
𝜓″ | ps" |
𝜒″ | ch" |
𝜃″ | th" |
𝜏″ | ta" |
𝜂″ | et" |
𝜁″ | ze" |
𝜎″ | si" |
𝜌″ | rh" |
𝜑0 | ph0 |
𝜓0 | ps0 |
𝜒0 | ch0_ |
𝜃0 | th0 |
𝜏0 | ta0 |
𝜂0 | et0 |
𝜁0 | ze0 |
𝜎0 | si0 |
𝜌0 | rh0 |
𝜑1 | ph1 |
𝜓1 | ps1 |
𝜒1 | ch1 |
𝜃1 | th1 |
𝜏1 | ta1 |
𝜂1 | et1 |
𝜁1 | ze1 |
𝜎1 | si1 |
𝜌1 | rh1 |
𝑎′ | a' |
𝑏′ | b' |
𝑐′ | c' |
𝑑′ | d' |
𝑒′ | e' |
𝑓′ | f' |
𝑔′ | g' |
ℎ′ | h' |
𝑖′ | i' |
𝑗′ | j' |
𝑘′ | k' |
𝑙′ | l' |
𝑚′ | m' |
𝑛′ | n' |
𝑜′ | o'_ |
𝑝′ | p' |
𝑞′ | q' |
𝑟′ | r' |
𝑠′ | s'_ |
𝑡′ | t' |
𝑢′ | u' |
𝑣′ | v'_ |
𝑤′ | w' |
𝑥′ | x' |
𝑦′ | y' |
𝑧′ | z' |
𝑎″ | a" |
𝑏″ | b" |
𝑐″ | c" |
𝑑″ | d" |
𝑒″ | e" |
𝑓″ | f" |
𝑔″ | g" |
ℎ″ | h" |
𝑖″ | i" |
𝑗″ | j" |
𝑘″ | k" |
𝑙″ | l" |
𝑚″ | m" |
𝑛″ | n" |
𝑜″ | o"_ |
𝑝″ | p" |
𝑞″ | q" |
𝑟″ | r" |
𝑠″ | s"_ |
𝑡″ | t" |
𝑢″ | u" |
𝑣″ | v"_ |
𝑤″ | w" |
𝑥″ | x" |
𝑦″ | y" |
𝑧″ | z" |
𝑎0 | a0_ |
𝑏0 | b0_ |
𝑐0 | c0_ |
𝑑0 | d0 |
𝑒0 | e0 |
𝑓0 | f0_ |
𝑔0 | g0 |
ℎ0 | h0 |
𝑖0 | i0 |
𝑗0 | j0 |
𝑘0 | k0 |
𝑙0 | l0 |
𝑚0 | m0 |
𝑛0 | n0_ |
𝑜0 | o0_ |
𝑝0 | p0 |
𝑞0 | q0 |
𝑟0 | r0 |
𝑠0 | s0 |
𝑡0 | t0 |
𝑢0 | u0 |
𝑣0 | v0 |
𝑤0 | w0 |
𝑥0 | x0 |
𝑦0 | y0 |
𝑧0 | z0 |
𝑎1 | a1_ |
𝑏1 | b1_ |
𝑐1 | c1_ |
𝑑1 | d1 |
𝑒1 | e1 |
𝑓1 | f1 |
𝑔1 | g1 |
ℎ1 | h1 |
𝑖1 | i1 |
𝑗1 | j1 |
𝑘1 | k1 |
𝑙1 | l1 |
𝑚1 | m1 |
𝑛1 | n1 |
𝑜1 | o1_ |
𝑝1 | p1 |
𝑞1 | q1 |
𝑟1 | r1 |
𝑠1 | s1 |
𝑡1 | t1 |
𝑢1 | u1 |
𝑣1 | v1 |
𝑤1 | w1 |
𝑥1 | x1 |
𝑦1 | y1 |
𝑧1 | z1 |
𝐴′ | A' |
𝐵′ | B' |
𝐶′ | C' |
𝐷′ | D' |
𝐸′ | E' |
𝐹′ | F' |
𝐺′ | G' |
𝐻′ | H' |
𝐼′ | I' |
𝐽′ | J' |
𝐾′ | K' |
𝐿′ | L' |
𝑀′ | M' |
𝑁′ | N' |
𝑂′ | O' |
𝑃′ | P' |
𝑄′ | Q' |
𝑅′ | R' |
𝑆′ | S' |
𝑇′ | T' |
𝑈′ | U' |
𝑉′ | V' |
𝑊′ | W' |
𝑋′ | X' |
𝑌′ | Y' |
𝑍′ | Z' |
𝐴″ | A" |
𝐵″ | B" |
𝐶″ | C" |
𝐷″ | D" |
𝐸″ | E" |
𝐹″ | F" |
𝐺″ | G" |
𝐻″ | H" |
𝐼″ | I" |
𝐽″ | J" |
𝐾″ | K" |
𝐿″ | L" |
𝑀″ | M" |
𝑁″ | N" |
𝑂″ | O" |
𝑃″ | P" |
𝑄″ | Q" |
𝑅″ | R" |
𝑆″ | S" |
𝑇″ | T" |
𝑈″ | U" |
𝑉″ | V" |
𝑊″ | W" |
𝑋″ | X" |
𝑌″ | Y" |
𝑍″ | Z" |
𝐴0 | A0 |
𝐵0 | B0 |
𝐶0 | C0 |
𝐷0 | D0 |
𝐸0 | E0 |
𝐹0 | F0 |
𝐺0 | G0 |
𝐻0 | H0 |
𝐼0 | I0 |
𝐽0 | J0 |
𝐾0 | K0 |
𝐿0 | L0 |
𝑀0 | M0 |
𝑁0 | N0 |
𝑂0 | O0 |
𝑃0 | P0 |
𝑄0 | Q0 |
𝑅0 | R0 |
𝑆0 | S0 |
𝑇0 | T0 |
𝑈0 | U0 |
𝑉0 | V0 |
𝑊0 | W0 |
𝑋0 | X0 |
𝑌0 | Y0 |
𝑍0 | Z0 |
𝐴1 | A1_ |
𝐵1 | B1_ |
𝐶1 | C1_ |
𝐷1 | D1_ |
𝐸1 | E1 |
𝐹1 | F1_ |
𝐺1 | G1_ |
𝐻1 | H1_ |
𝐼1 | I1_ |
𝐽1 | J1 |
𝐾1 | K1 |
𝐿1 | L1_ |
𝑀1 | M1_ |
𝑁1 | N1 |
𝑂1 | O1_ |
𝑃1 | P1 |
𝑄1 | Q1 |
𝑅1 | R1_ |
𝑆1 | S1_ |
𝑇1 | T1 |
𝑈1 | U1 |
𝑉1 | V1_ |
𝑊1 | W1 |
𝑋1 | X1 |
𝑌1 | Y1 |
𝑍1 | Z1 |
pred | _pred |
Se | _Se |
FrSe | _FrSe |
trCl | _trCl |
TrFo | _TrFo |
AcyclicGraph | AcyclicGraph |
Retr | Retr |
PConn | PConn |
SConn | SConn |
CovMap | CovMap |
∈𝑔 | e.g |
⊼𝑔 | |g |
∀𝑔 | A.g |
Fmla | Fmla |
Sat | Sat |
Sat∈ | SatE |
⊧ | |= |
=𝑔 | =g |
∧𝑔 | /\g |
¬𝑔 | -.g |
→𝑔 | ->g |
↔𝑔 | <->g |
∨𝑔 | \/g |
∃𝑔 | E.g |
AxExt | AxExt |
AxRep | AxRep |
AxPow | AxPow |
AxUn | AxUn |
AxReg | AxReg |
AxInf | AxInf |
ZF | ZF |
mCN | mCN |
mVR | mVR |
mType | mType |
mTC | mTC |
mAx | mAx |
mVT | mVT |
mREx | mREx |
mEx | mEx |
mDV | mDV |
mVars | mVars |
mRSubst | mRSubst |
mSubst | mSubst |
mVH | mVH |
mPreSt | mPreSt |
mStRed | mStRed |
mStat | mStat |
mFS | mFS |
mCls | mCls |
mPPSt | mPPSt |
mThm | mThm |
m0St | m0St |
mSA | mSA |
mWGFS | mWGFS |
mSyn | mSyn |
mESyn | mESyn |
mGFS | mGFS |
mTree | mTree |
mST | mST |
mSAX | mSAX |
mUFS | mUFS |
mUV | mUV |
mVL | mVL |
mVSubst | mVSubst |
mFresh | mFresh |
mFRel | mFRel |
mEval | mEval |
mMdl | mMdl |
mUSyn | mUSyn |
mGMdl | mGMdl |
mItp | mItp |
mFromItp | mFromItp |
IntgRing | IntgRing |
cplMetSp | cplMetSp |
HomLimB | HomLimB |
HomLim | HomLim |
polyFld | polyFld |
splitFld1 | splitFld1 |
splitFld | splitFld |
polySplitLim | polySplitLim |
ZRing | ZRing |
GF | GF |
GF∞ | GF_oo |
~Qp | ~Qp |
/Qp | /Qp |
Qp | Qp |
Zp | Zp |
_Qp | _Qp |
Cp | Cp |
𝛻 | al |
𝑥O | xO |
𝑥L | xL |
𝑥R | xR |
𝑦O | yO |
𝑦L | yL |
𝑦R | yR |
wsuc | wsuc |
WLim | WLim |
+no | +no |
No | No |
<s | <s |
bday | bday |
≤s | <_s |
<<s | <<s |
|s | |s |
0s | 0s |
1s | 1s |
M | _M |
O | _Old |
N | _N |
L | _L |
R | _R |
norec | norec |
norec2 | norec2 |
+s | +s |
-us | -us |
-s | -s |
⊗ | (x) |
Bigcup | Bigcup |
SSet | SSet |
Trans | Trans |
Limits | Limits |
Fix | Fix |
Funs | Funs |
Singleton | Singleton |
Singletons | Singletons |
Image | Image |
Cart | Cart |
Img | Img |
Domain | Domain |
Range | Range |
pprod | pprod |
Apply | Apply |
Cup | Cup |
Cap | Cap |
Succ | Succ |
Funpart | Funpart |
FullFun | FullFun |
Restrict | Restrict |
UB | UB |
LB | LB |
⟪ | << |
⟫ | >> |
×× | XX. |
OuterFiveSeg | OuterFiveSeg |
TransportTo | TransportTo |
InnerFiveSeg | InnerFiveSeg |
Cgr3 | Cgr3 |
Colinear | Colinear |
FiveSeg | FiveSeg |
Seg≤ | Seg<_ |
OutsideOf | OutsideOf |
Line | Line |
LinesEE | LinesEE |
Ray | Ray |
△ | _/_\ |
△ | _/_\^n |
Hf | Hf |
Fne | Fne |
gcdOLD | gcdOLD |
Prv | Prv |
∃** | E** |
Ⅎ' | F// |
{ | {{ |
} | }} |
sngl | sngl |
tag | tag |
Proj | Proj |
⦅ | (| |
, | ,, |
⦆ | |) |
pr1 | pr1 |
pr2 | pr2 |
elwise | elwise |
Moore | Moore_ |
Set⟶ | -Set-> |
Top⟶ | -Top-> |
Mgm⟶ | -Mgm-> |
TopMgm⟶ | -TopMgm-> |
curry_ | curry_ |
uncurry_ | uncurry_ |
[ | [s |
]struct | ]s |
ℝ≥0 | RR>=0 |
ℝ>0 | RR>0 |
Id | _Id |
𝒫* | ~P_* |
𝒫* | ~P^* |
{R | {R |
+∞eiτ | inftyexpitau |
ℂ∞N | CCinftyN |
1/2 | 1/2 |
+∞ei | inftyexpi |
ℂ∞ | CCinfty |
ℂ̅ | CCbar |
+∞ | pinfty |
-∞ | minfty |
ℝ̅ | RRbar |
∞ | infty |
ℂ̂ | CChat |
ℝ̂ | RRhat |
+ℂ̅ | +cc |
-ℂ̅ | -cc |
<ℝ̅ | <rr |
Arg | Arg |
·ℂ̅ | .cc |
-1ℂ̅ | invc |
iω↪ℕ | iomnn |
ℕ̅ | NNbar |
ℤ̅ | ZZbar |
ℤ̂ | ZZhat |
∥ℂ | ||C |
FinSum | FinSum |
ℝ-Vec | RRVec |
End | End |
↑↑ | ^^ |
TotBnd | TotBnd |
Bnd | Bnd |
Ismty | Ismty |
ℝn | Rn |
Ass | Ass |
ExId | ExId |
Magma | Magma |
SemiGrp | SemiGrp |
MndOp | MndOp |
GrpOpHom | GrpOpHom |
RingOps | RingOps |
DivRingOps | DivRingOps |
RngHom | RngHom |
RngIso | RngIso |
≃𝑟 | ~=R |
Com2 | Com2 |
Fld | Fld |
CRingOps | CRingOps |
Idl | Idl |
PrIdl | PrIdl |
MaxIdl | MaxIdl |
PrRing | PrRing |
Dmn | Dmn |
IdlGen | IdlGen |
⋉ | |X. |
≀ | ,~ |
∼ | ~ |
Rels | Rels |
S | _S |
Refs | Refs |
RefRels | RefRels |
RefRel | RefRel |
CnvRefs | CnvRefs |
CnvRefRels | CnvRefRels |
CnvRefRel | CnvRefRel |
Syms | Syms |
SymRels | SymRels |
SymRel | SymRel |
Trs | Trs |
TrRels | TrRels |
TrRel | TrRel |
EqvRels | EqvRels |
EqvRel | EqvRel |
CoElEqvRels | CoElEqvRels |
CoElEqvRel | CoElEqvRel |
Redunds | Redunds |
Redund | Redund |
redund | redund |
DomainQss | DomainQss |
DomainQs | DomainQs |
Ers | Ers |
ErALTV | ErALTV |
MembErs | MembErs |
MembEr | MembEr |
Funss | Funss |
FunsALTV | FunsALTV |
FunALTV | FunALTV |
Disjss | Disjss |
Disjs | Disjs |
Disj | Disj |
ElDisjs | ElDisjs |
ElDisj | ElDisj |
Prt | Prt |
LSAtoms | LSAtoms |
LSHyp | LSHyp |
⋖L | <oL |
LFnl | LFnl |
LKer | LKer |
LDual | LDual |
OP | OP |
cm | cm |
OL | OL |
OML | OML |
⋖ | <o |
Atoms | Atoms |
AtLat | AtLat |
CvLat | CvLat |
HL | HL |
LLines | LLines |
LPlanes | LPlanes |
LVols | LVols |
Lines | Lines |
Points | Points |
PSubSp | PSubSp |
pmap | pmap |
+𝑃 | +P |
PCl | PCl |
⊥𝑃 | _|_P |
PSubCl | PSubCl |
LHyp | LHyp |
LAut | LAut |
WAtoms | WAtoms |
PAut | PAut |
LDil | LDil |
LTrn | LTrn |
Dil | Dil |
Trn | Trn |
trL | trL |
TGrp | TGrp |
TEndo | TEndo |
EDRing | EDRing |
EDRingR | EDRingR |
DVecA | DVecA |
DIsoA | DIsoA |
DVecH | DVecH |
ocA | ocA |
vA | vA |
DIsoB | DIsoB |
DIsoC | DIsoC |
DIsoH | DIsoH |
ocH | ocH |
joinH | joinH |
LPol | LPol |
LCDual | LCDual |
mapd | mapd |
HVMap | HVMap |
HDMap1 | HDMap1 |
HDMap | HDMap |
HGMap | HGMap |
HLHil | HLHil |
−ℝ | -R |
ℙ𝕣𝕠𝕛 | PrjSp |
ℙ𝕣𝕠𝕛n | PrjSpn |
ℙ𝕣𝕠𝕛Crv | PrjCrv |
NoeACS | NoeACS |
mzPolyCld | mzPolyCld |
mzPoly | mzPoly |
Dioph | Dioph |
Pell1QR | Pell1QR |
Pell14QR | Pell14QR |
Pell1234QR | Pell1234QR |
PellFund | PellFund |
◻NN | []NN |
Xrm | rmX |
Yrm | rmY |
LFinGen | LFinGen |
LNoeM | LNoeM |
LNoeR | LNoeR |
ldgIdlSeq | ldgIdlSeq |
Monic | Monic |
Poly< | Poly< |
degAA | degAA |
minPolyAA | minPolyAA |
ℤ | _ZZ |
IntgOver | IntgOver |
MEndo | MEndo |
CytP | CytP |
TopSep | TopSep |
TopLnd | TopLnd |
r* | r* |
hereditary | hereditary |
MndRing | MndRing |
Scott | Scott |
Coll | Coll |
C𝑐 | _Cc |
+𝑟 | +r |
-𝑟 | -r |
.𝑣 | .v |
PtDf | PtDf |
RR3 | RR3 |
line3 | line3 |
( | (. |
) | ). |
▶ | ->. |
→ | ->.. |
, | ,. |
lim inf | liminf |
~~>* | ~~>* |
SAlg | SAlg |
SalOn | SalOn |
SalGen | SalGen |
Σ^ | sum^ |
Meas | Meas |
OutMeas | OutMeas |
CaraGen | CaraGen |
voln* | voln* |
voln | voln |
SMblFn | SMblFn |
jph | jph |
jps | jps |
jch | jch |
jth | jth |
jta | jta |
jet | jet |
jze | jze |
jps | jsi |
jrh | jrh |
jmu | jmu |
jla | jla |
℩' | iota' |
defAt | defAt |
''' | ''' |
(( | (( |
)) | )) |
'''' | '''' |
_∉ | e// |
RePart | RePart |
⇄ | <> |
Pairs | Pairs |
Pairsproper | PrPairs |
FermatNo | FermatNo |
Even | Even |
Odd | Odd |
FPPr | FPPr |
GoldbachEven | GoldbachEven |
GoldbachOddW | GoldbachOddW |
GoldbachOdd | GoldbachOdd |
GrIsom | GrIsom |
IsomGr | IsomGr |
UPWalks | UPWalks |
MgmHom | MgmHom |
SubMgm | SubMgm |
clLaw | clLaw |
assLaw | assLaw |
comLaw | comLaw |
intOp | intOp |
clIntOp | clIntOp |
assIntOp | assIntOp |
MgmALT | MgmALT |
CMgmALT | CMgmALT |
SGrpALT | SGrpALT |
CSGrpALT | CSGrpALT |
Rng | Rng |
RngHomo | RngHomo |
RngIsom | RngIsom |
RngCat | RngCat |
RngCatALTV | RngCatALTV |
RingCat | RingCat |
RingCatALTV | RingCatALTV |
DMatALT | DMatALT |
ScMatALT | ScMatALT |
linC | linC |
LinCo | LinCo |
linIndS | linIndS |
linDepS | linDepS |
/f | /_f |
Ο | _O |
#b | #b |
digit | digit |
-aryF | -aryF |
IterComp | IterComp |
Ack | Ack |
LineM | LineM |
Sphere | Sphere |
ThinCat | ThinCat |
ProsetToCat | ProsetToCat |
MndToCat | MndToCat |
setrecs | setrecs |
Pg | Pg |
≥ | >_ |
> | > |
sinh | sinh |
cosh | cosh |
tanh | tanh |
sec | sec |
csc | csc |
cot | cot |
log_ | log_ |
Reflexive | Reflexive |
Irreflexive | Irreflexive |
∀! | A! |
UpWord | UpWord |
Copyright terms: Public domain | W3C validator |