NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  equtrr Unicode version

Theorem equtrr 1683
Description: A transitive law for equality. Lemma L17 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
equtrr

Proof of Theorem equtrr
StepHypRef Expression
1 equtr 1682 . 2
21com12 27 1
Colors of variables: wff setvar class
Syntax hints:   wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675
This theorem depends on definitions:  df-bi 177  df-ex 1542
This theorem is referenced by:  equtr2  1688  ax12b  1689  ax12bOLD  1690  ax12  1935  ax12from12o  2156  ax11eq  2193
  Copyright terms: Public domain W3C validator