NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ax-11d GIF version

Axiom ax-11d 2300
Description: Distinct variable version of ax-11 1746. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
ax-11d (x = y → (yφx(x = yφ)))
Distinct variable group:   x,y
Allowed substitution hints:   φ(x,y)

Detailed syntax breakdown of Axiom ax-11d
StepHypRef Expression
1 vx . . 3 setvar x
2 vy . . 3 setvar y
31, 2weq 1643 . 2 wff x = y
4 wph . . . 4 wff φ
54, 2wal 1540 . . 3 wff yφ
63, 4wi 4 . . . 4 wff (x = yφ)
76, 1wal 1540 . . 3 wff x(x = yφ)
85, 7wi 4 . 2 wff (yφx(x = yφ))
93, 8wi 4 1 wff (x = y → (yφx(x = yφ)))
Colors of variables: wff setvar class
This axiom is referenced by: (None)
  Copyright terms: Public domain W3C validator