New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax-11d | GIF version |
Description: Distinct variable version of ax-11 1746. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
ax-11d | ⊢ (x = y → (∀yφ → ∀x(x = y → φ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar x | |
2 | vy | . . 3 setvar y | |
3 | 1, 2 | weq 1643 | . 2 wff x = y |
4 | wph | . . . 4 wff φ | |
5 | 4, 2 | wal 1540 | . . 3 wff ∀yφ |
6 | 3, 4 | wi 4 | . . . 4 wff (x = y → φ) |
7 | 6, 1 | wal 1540 | . . 3 wff ∀x(x = y → φ) |
8 | 5, 7 | wi 4 | . 2 wff (∀yφ → ∀x(x = y → φ)) |
9 | 3, 8 | wi 4 | 1 wff (x = y → (∀yφ → ∀x(x = y → φ))) |
Colors of variables: wff setvar class |
This axiom is referenced by: (None) |
Copyright terms: Public domain | W3C validator |