New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bijust | GIF version |
Description: Theorem used to justify definition of biconditional df-bi 177. (Contributed by NM, 11-May-1999.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
Ref | Expression |
---|---|
bijust | ⊢ ¬ ((¬ ((φ → ψ) → ¬ (ψ → φ)) → ¬ ((φ → ψ) → ¬ (ψ → φ))) → ¬ (¬ ((φ → ψ) → ¬ (ψ → φ)) → ¬ ((φ → ψ) → ¬ (ψ → φ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (¬ ((φ → ψ) → ¬ (ψ → φ)) → ¬ ((φ → ψ) → ¬ (ψ → φ))) | |
2 | pm2.01 160 | . 2 ⊢ (((¬ ((φ → ψ) → ¬ (ψ → φ)) → ¬ ((φ → ψ) → ¬ (ψ → φ))) → ¬ (¬ ((φ → ψ) → ¬ (ψ → φ)) → ¬ ((φ → ψ) → ¬ (ψ → φ)))) → ¬ (¬ ((φ → ψ) → ¬ (ψ → φ)) → ¬ ((φ → ψ) → ¬ (ψ → φ)))) | |
3 | 1, 2 | mt2 170 | 1 ⊢ ¬ ((¬ ((φ → ψ) → ¬ (ψ → φ)) → ¬ ((φ → ψ) → ¬ (ψ → φ))) → ¬ (¬ ((φ → ψ) → ¬ (ψ → φ)) → ¬ ((φ → ψ) → ¬ (ψ → φ)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |