New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax-1 | GIF version |
Description: Axiom Simp. Axiom A1 of [Margaris] p. 49. One of the 3 axioms of propositional calculus. The 3 axioms are also given as Definition 2.1 of [Hamilton] p. 28. This axiom is called Simp or "the principle of simplification" in Principia Mathematica (Theorem *2.02 of [WhiteheadRussell] p. 100) because "it enables us to pass from the joint assertion of φ and ψ to the assertion of φ simply." (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ax-1 | ⊢ (φ → (ψ → φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . 2 wff φ | |
2 | wps | . . 3 wff ψ | |
3 | 2, 1 | wi 4 | . 2 wff (ψ → φ) |
4 | 1, 3 | wi 4 | 1 wff (φ → (ψ → φ)) |
Colors of variables: wff setvar class |
This axiom is referenced by: a1i 10 id 19 idALT 20 a1d 22 a1dd 42 jarr 91 pm2.86i 92 pm2.86d 93 pm2.51 145 dfbi1gb 185 pm5.1im 229 biimt 325 pm5.4 351 pm4.8 354 olc 373 simpl 443 pm4.45im 545 pm2.64 764 pm2.74 819 pm2.82 825 oibabs 851 pm5.14 856 biort 866 dedlem0a 918 meredith 1404 tbw-bijust 1463 tbw-negdf 1464 tbw-ax2 1466 merco1 1478 ax11dgen 1722 19.38 1794 nfimdOLD 1809 hbimdOLD 1816 hbimOLD 1818 a16g 1945 stdpc4 2024 sbi2 2064 ax11v 2096 ax11 2155 ax46to4 2163 ax467to4 2170 ax11f 2192 ax11eq 2193 ax11el 2194 ax11indi 2196 ax11indalem 2197 ax11inda2ALT 2198 ax11inda2 2199 morimv 2252 euim 2254 alral 2673 r19.12 2728 r19.27av 2753 r19.37 2761 eqvinc 2967 rr19.3v 2981 pwadjoin 4120 iotanul 4355 |
Copyright terms: Public domain | W3C validator |