Detailed syntax breakdown of Definition df-found
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cfound 5895 | 
. 2
class  Fr | 
| 2 |   | vx | 
. . . . . . . 8
setvar x | 
| 3 | 2 | cv 1641 | 
. . . . . . 7
class x | 
| 4 |   | va | 
. . . . . . . 8
setvar a | 
| 5 | 4 | cv 1641 | 
. . . . . . 7
class a | 
| 6 | 3, 5 | wss 3258 | 
. . . . . 6
wff x
⊆ a | 
| 7 |   | c0 3551 | 
. . . . . . 7
class ∅ | 
| 8 | 3, 7 | wne 2517 | 
. . . . . 6
wff x
≠ ∅ | 
| 9 | 6, 8 | wa 358 | 
. . . . 5
wff (x
⊆ a
∧ x ≠
∅) | 
| 10 |   | vy | 
. . . . . . . . . 10
setvar y | 
| 11 | 10 | cv 1641 | 
. . . . . . . . 9
class y | 
| 12 |   | vz | 
. . . . . . . . . 10
setvar z | 
| 13 | 12 | cv 1641 | 
. . . . . . . . 9
class z | 
| 14 |   | vr | 
. . . . . . . . . 10
setvar r | 
| 15 | 14 | cv 1641 | 
. . . . . . . . 9
class r | 
| 16 | 11, 13, 15 | wbr 4640 | 
. . . . . . . 8
wff yrz | 
| 17 | 10, 12 | weq 1643 | 
. . . . . . . 8
wff y =
z | 
| 18 | 16, 17 | wi 4 | 
. . . . . . 7
wff (yrz → y =
z) | 
| 19 | 18, 10, 3 | wral 2615 | 
. . . . . 6
wff ∀y ∈ x (yrz → y =
z) | 
| 20 | 19, 12, 3 | wrex 2616 | 
. . . . 5
wff ∃z ∈ x ∀y ∈ x (yrz → y =
z) | 
| 21 | 9, 20 | wi 4 | 
. . . 4
wff ((x
⊆ a
∧ x ≠
∅) → ∃z ∈ x ∀y ∈ x (yrz → y =
z)) | 
| 22 | 21, 2 | wal 1540 | 
. . 3
wff ∀x((x ⊆ a ∧ x ≠ ∅) →
∃z ∈ x ∀y ∈ x (yrz → y =
z)) | 
| 23 | 22, 14, 4 | copab 4623 | 
. 2
class {〈r, a〉 ∣ ∀x((x ⊆ a ∧ x ≠ ∅) → ∃z ∈ x ∀y ∈ x (yrz → y =
z))} | 
| 24 | 1, 23 | wceq 1642 | 
1
wff  Fr =
{〈r,
a〉 ∣ ∀x((x ⊆ a ∧ x ≠ ∅) → ∃z ∈ x ∀y ∈ x (yrz → y =
z))} |