Detailed syntax breakdown of Definition df-found
Step | Hyp | Ref
| Expression |
1 | | cfound 5895 |
. 2
class Fr |
2 | | vx |
. . . . . . . 8
setvar x |
3 | 2 | cv 1641 |
. . . . . . 7
class x |
4 | | va |
. . . . . . . 8
setvar a |
5 | 4 | cv 1641 |
. . . . . . 7
class a |
6 | 3, 5 | wss 3258 |
. . . . . 6
wff x
⊆ a |
7 | | c0 3551 |
. . . . . . 7
class ∅ |
8 | 3, 7 | wne 2517 |
. . . . . 6
wff x
≠ ∅ |
9 | 6, 8 | wa 358 |
. . . . 5
wff (x
⊆ a
∧ x ≠
∅) |
10 | | vy |
. . . . . . . . . 10
setvar y |
11 | 10 | cv 1641 |
. . . . . . . . 9
class y |
12 | | vz |
. . . . . . . . . 10
setvar z |
13 | 12 | cv 1641 |
. . . . . . . . 9
class z |
14 | | vr |
. . . . . . . . . 10
setvar r |
15 | 14 | cv 1641 |
. . . . . . . . 9
class r |
16 | 11, 13, 15 | wbr 4640 |
. . . . . . . 8
wff yrz |
17 | 10, 12 | weq 1643 |
. . . . . . . 8
wff y =
z |
18 | 16, 17 | wi 4 |
. . . . . . 7
wff (yrz → y =
z) |
19 | 18, 10, 3 | wral 2615 |
. . . . . 6
wff ∀y ∈ x (yrz → y =
z) |
20 | 19, 12, 3 | wrex 2616 |
. . . . 5
wff ∃z ∈ x ∀y ∈ x (yrz → y =
z) |
21 | 9, 20 | wi 4 |
. . . 4
wff ((x
⊆ a
∧ x ≠
∅) → ∃z ∈ x ∀y ∈ x (yrz → y =
z)) |
22 | 21, 2 | wal 1540 |
. . 3
wff ∀x((x ⊆ a ∧ x ≠ ∅) →
∃z ∈ x ∀y ∈ x (yrz → y =
z)) |
23 | 22, 14, 4 | copab 4623 |
. 2
class {〈r, a〉 ∣ ∀x((x ⊆ a ∧ x ≠ ∅) → ∃z ∈ x ∀y ∈ x (yrz → y =
z))} |
24 | 1, 23 | wceq 1642 |
1
wff Fr =
{〈r,
a〉 ∣ ∀x((x ⊆ a ∧ x ≠ ∅) → ∃z ∈ x ∀y ∈ x (yrz → y =
z))} |