Detailed syntax breakdown of Definition df-lec
Step | Hyp | Ref
| Expression |
1 | | clec 6090 |
. 2
class ≤c |
2 | | vx |
. . . . . . 7
setvar x |
3 | 2 | cv 1641 |
. . . . . 6
class x |
4 | | vy |
. . . . . . 7
setvar y |
5 | 4 | cv 1641 |
. . . . . 6
class y |
6 | 3, 5 | wss 3258 |
. . . . 5
wff x
⊆ y |
7 | | vb |
. . . . . 6
setvar b |
8 | 7 | cv 1641 |
. . . . 5
class b |
9 | 6, 4, 8 | wrex 2616 |
. . . 4
wff ∃y ∈ b x ⊆ y |
10 | | va |
. . . . 5
setvar a |
11 | 10 | cv 1641 |
. . . 4
class a |
12 | 9, 2, 11 | wrex 2616 |
. . 3
wff ∃x ∈ a ∃y ∈ b x ⊆ y |
13 | 12, 10, 7 | copab 4623 |
. 2
class {〈a, b〉 ∣ ∃x ∈ a ∃y ∈ b x ⊆ y} |
14 | 1, 13 | wceq 1642 |
1
wff ≤c = {〈a, b〉 ∣ ∃x ∈ a ∃y ∈ b x ⊆ y} |