New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm2.75 | GIF version |
Description: Theorem *2.75 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 4-Jan-2013.) |
Ref | Expression |
---|---|
pm2.75 | ⊢ ((φ ∨ ψ) → ((φ ∨ (ψ → χ)) → (φ ∨ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.76 821 | . 2 ⊢ ((φ ∨ (ψ → χ)) → ((φ ∨ ψ) → (φ ∨ χ))) | |
2 | 1 | com12 27 | 1 ⊢ ((φ ∨ ψ) → ((φ ∨ (ψ → χ)) → (φ ∨ χ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |