Theorem not12an2impnot1VD
Description: If a double conjunction is false and the second conjunct is true, then the first conjunct is false. not12an2impnot1VD is the Virtual Deduction proof verified by automatically transforming it into the Metamath proof of not12an2impnot1 using completeusersproof, which is verified by the Metamath program. not12an2impnot1RO is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. (Contributed by Alan Sare, 6-Jun-2018.)
Assertion
Ref Expression
not12an2impnot1VD (   (¬ (𝜑𝜓) ∧ 𝜓)   ▶    ¬ 𝜑   )

Proof of Theorem not12an2impnot1VD
StepHypExpression
1  (   (¬ (𝜑𝜓) ∧ 𝜓)   ▶   (¬ (𝜑𝜓) ∧ 𝜓)   )
21 (   (¬ (𝜑𝜓) ∧ 𝜓)   ▶   ¬ (𝜑𝜓)   )
32 (   (¬ (𝜑𝜓) ∧ 𝜓)   ▶   (𝜓 → ¬ 𝜑)   )
41 (   (¬ (𝜑𝜓) ∧ 𝜓)   ▶   𝜓   )
qed3, 4 (   (¬ (𝜑𝜓) ∧ 𝜓)   ▶   ¬ 𝜑   )
  Copyright terms: Public domain W3C validator