Proof of Theorem suctrRO
| Step | Hyp | Ref | Expression |
| 1 | | id | ⊢ (Tr 𝐴 → Tr 𝐴)
|
| 2 | | id | ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴))
|
| 3 | 2 | simpld | ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ 𝑦)
|
| 4 | | id | ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐴)
|
| d15 | | trel | ⊢ (Tr 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))
|
| d14 | d15 | 3impib | ⊢ ((Tr 𝐴 ∧ 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)
|
| d1 | d14 | idi | ⊢ ((Tr 𝐴 ∧ 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)
|
| 5 | 1, 3, 4, d1 | syl3an | ⊢ ((Tr 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)
|
| 6 | | sssucid | ⊢ 𝐴 ⊆ suc 𝐴
|
| 7 | 6, 5 | sseldi | ⊢ ((Tr 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ suc 𝐴)
|
| 8 | 7 | 3expia | ⊢ ((Tr 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)) → (𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴))
|
| 9 | | id | ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴)
|
| d2 | 3 | adantr | ⊢ (((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ∧ 𝑦 = 𝐴) → 𝑧 ∈ 𝑦)
|
| d3 | 9 | adantl | ⊢ (((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴)
|
| 10 | d2, d3 | eleqtrd | ⊢ (((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ∧ 𝑦 = 𝐴) → 𝑧 ∈ 𝐴)
|
| 11 | 6, 10 | sseldi | ⊢ (((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ∧ 𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴)
|
| 12 | 11 | ex | ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → (𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴))
|
| 13 | 2 | simprd | ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴)
|
| d4 | | elsuci | ⊢ (𝑦 ∈ suc 𝐴 → (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))
|
| 14 | 13, d4 | syl | ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))
|
| d5 | 12 | adantl | ⊢ ((Tr 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)) → (𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴))
|
| d6 | 14 | adantl | ⊢ ((Tr 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)) → (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))
|
| 15 | 8, d5, d6 | mpjaod | ⊢ ((Tr 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)) → 𝑧 ∈ suc 𝐴)
|
| 16 | 15 | ex | ⊢ (Tr 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
|
| 17 | 16 | alrimivv | ⊢ (Tr 𝐴 → ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
|
| d16 | | dftr2 | ⊢ (Tr suc 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
|
| d8 | d16 | biimpri | ⊢ (∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) → Tr suc 𝐴)
|
| qed | 17, d8 | syl | ⊢ (Tr 𝐴 → Tr suc 𝐴)
|