ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.9v Unicode version

Theorem 19.9v 1793
Description: Special case of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-May-1995.) (Revised by NM, 21-May-2007.)
Assertion
Ref Expression
19.9v  |-  ( E. x ph  <->  ph )
Distinct variable group:    ph, x

Proof of Theorem 19.9v
StepHypRef Expression
1 ax-17 1460 . 2  |-  ( ph  ->  A. x ph )
2119.9h 1575 1  |-  ( E. x ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 103   E.wex 1422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-17 1460
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  spc2gv  2689  spc3gv  2691  mo2icl  2772  brtpos2  5900
  Copyright terms: Public domain W3C validator