ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an32 Unicode version

Theorem an32 504
Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.)
Assertion
Ref Expression
an32  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ( ph  /\  ch )  /\  ps ) )

Proof of Theorem an32
StepHypRef Expression
1 anass 387 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ph  /\  ( ps  /\  ch ) ) )
2 an12 503 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  <->  ( ps  /\  ( ph  /\  ch ) ) )
3 ancom 257 . 2  |-  ( ( ps  /\  ( ph  /\ 
ch ) )  <->  ( ( ph  /\  ch )  /\  ps ) )
41, 2, 33bitri 199 1  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ( ph  /\  ch )  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 101    <-> wb 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114
This theorem is referenced by:  an32s  510  3anan32  907  indifdir  3221  inrab2  3238  reupick  3249  unidif0  3948  resco  4853  f11o  5187  respreima  5323  dff1o6  5444  dfoprab2  5580  xpassen  6335  enq0enq  6587  elioomnf  8938
  Copyright terms: Public domain W3C validator