Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axempty Unicode version

Theorem bj-axempty 10400
Description: Axiom of the empty set from bounded separation. It is provable from bounded separation since the intuitionistic FOL used in iset.mm assumes a non-empty universe. See axnul 3910. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 3911 instead. (New usage is discouraged.)
Assertion
Ref Expression
bj-axempty  |-  E. x A. y  e.  x F.
Distinct variable group:    x, y

Proof of Theorem bj-axempty
StepHypRef Expression
1 bj-axemptylem 10399 . 2  |-  E. x A. y ( y  e.  x  -> F.  )
2 df-ral 2328 . . 3  |-  ( A. y  e.  x F.  <->  A. y ( y  e.  x  -> F.  )
)
32exbii 1512 . 2  |-  ( E. x A. y  e.  x F.  <->  E. x A. y ( y  e.  x  -> F.  )
)
41, 3mpbir 138 1  |-  E. x A. y  e.  x F.
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1257   F. wfal 1264   E.wex 1397   A.wral 2323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-4 1416  ax-ial 1443  ax-bd0 10320  ax-bdim 10321  ax-bdn 10324  ax-bdeq 10327  ax-bdsep 10391
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-fal 1265  df-ral 2328
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator