ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbresg Unicode version

Theorem csbresg 4822
Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbresg  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  |`  C )  =  (
[_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) )

Proof of Theorem csbresg
StepHypRef Expression
1 csbing 3283 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  (
[_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) ) )
2 csbxpg 4620 . . . . 5  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V ) )
3 csbconstg 3016 . . . . . 6  |-  ( A  e.  V  ->  [_ A  /  x ]_ _V  =  _V )
43xpeq2d 4563 . . . . 5  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V )  =  ( [_ A  /  x ]_ C  X.  _V ) )
52, 4eqtrd 2172 . . . 4  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  _V ) )
65ineq2d 3277 . . 3  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
) )
71, 6eqtrd 2172 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  (
[_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
) )
8 df-res 4551 . . 3  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
98csbeq2i 3029 . 2  |-  [_ A  /  x ]_ ( B  |`  C )  =  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )
10 df-res 4551 . 2  |-  ( [_ A  /  x ]_ B  |` 
[_ A  /  x ]_ C )  =  (
[_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
)
117, 9, 103eqtr4g 2197 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  |`  C )  =  (
[_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480   _Vcvv 2686   [_csb 3003    i^i cin 3070    X. cxp 4537    |` cres 4541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-in 3077  df-opab 3990  df-xp 4545  df-res 4551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator